The aim of this study was to investigate the influence of image resolution manipulation on the photogrammetric measurement of the rearfoot static angle. The study design was that of a reliability study. We evaluated 19 healthy young adults (11 females and 8 males). The photographs were taken at 1536 pixels in the greatest dimension, resized into four different resolutions (1200, 768, 600, 384 pixels) and analyzed by three equally trained examiners on a 96-pixels per inch (ppi) screen. An experienced physiotherapist marked the anatomic landmarks of rearfoot static angles on two occasions within a 1-week interval. Three different examiners had marked angles on digital pictures. The systematic error and the smallest detectable difference were calculated from the angle values between the image resolutions and times of evaluation. Different resolutions were compared by analysis of variance. Inter-and intra-examiner reliability was calculated by intra-class correlation coefficients (ICC). The rearfoot static angles obtained by the examiners in each resolution were not different (P > 0.05); however, the higher the image resolution the better the inter-examiner reliability. The intra-examiner reliability (within a 1-week interval) was considered to be unacceptable for all image resolutions (ICC range: 0.08-0.52). The whole body image of an adult with a minimum size of 768 pixels analyzed on a 96-ppi screen can provide very good inter-examiner reliability for photogrammetric measurements of rearfoot static angles (ICC range: 0.85-0.92), although the intra-examiner reliability within each resolution was not acceptable. Therefore, this method is not a proper tool for follow-up evaluations of patients within a therapeutic protocol.
In March 2020, the World Health Organization (WHO) declared the disease caused by the SARS-CoV2 virus, known as COVID-19, to be a pandemic. The sporting world, too, is suffering from the global effects of this disease, with the postponement or cancellation of competitions, including the 2020 Tokyo Olympic Games. As a proposal for containing the disease, social isolation was declared. Despite the importance of this measure, it was harmful for Olympic athletes, as they had to stay away from their training site and trainers, as well as their interdisciplinary teams. It is therefore important to study this harm caused, in order to minimize it. In general, it is believed that regular physical activity is associated with improved immune system functioning. The lack of training can therefore have significant consequences for the performance and health of the Olympic athlete. From the athlete's point of view, the impaired immune system, due to the reduced frequency of physical exercise, leaves them more vulnerable to contracting or developing infections or other diseases. The risk of harm due to the decreased performance of preventive works is also evident in this population. The reductions in training load and intensity can cause changes in the athlete's body composition and affect various aspects of cardiorespiratory fitness, as well as reducing strength levels and muscle potency. In relation to the athlete's mental health, two aspects are particularly challenging: isolation and uncertainty. Based on the possible harm caused by social isolation, the need is seen for a specific and joint work, in an attempt to minimize it. This work addresses the following topics: (I) context: transmission, symptoms, diagnosis, treatment, discharge criteria, isolation and post-pandemic consequences; (II) harm and proposals: nutritional, physiological, biomechanical and psychological. Level of evidence II; Review Article.
The aim of this study was to investigate the effect of errors in the location of the center of pressure (5 and 10 mm) on lower limb joint moment uncertainties at different gait velocities (1.0, 1.5, and 2.0 m/s). Our hypotheses were that the absolute joint moment uncertainties would be gradually reduced from distal to proximal joints and from higher to lower velocities. Joint moments of five healthy young adults were calculated by inverse dynamics using the bottom-up approach, depending on which estimate the uncertainty propagated. Results indicated that there is a linear relationship between errors in center of pressure and joint moment uncertainties. The absolute moment peak uncertainties expressed on the anatomic reference frames decreased from distal to proximal joints, confirming our first hypothesis, except for the abduction moments. There was an increase in moment uncertainty (up to 0.04 N m/kg for the 10 mm error in the center of pressure) from the lower to higher gait velocity, confirming our second hypothesis, although, once again, not for hip or knee abduction. Finally, depending on the plane of movement and the joint, relative uncertainties experienced variation (between 5 and 31%), and the knee joint moments were the most affected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.