Epiphytic plants in the Bromeliaceae known as tank bromeliads essentially lack stems and absorptive roots and instead take up water from reservoirs formed by their overlapping leaf bases. For such plants, leaf hydraulic conductance is plant hydraulic conductance. Their simple strap-shaped leaves and parallel venation make them suitable for modeling leaf hydraulic conductance based on vasculature and other anatomical and morphological traits. Plants of the tank bromeliad Guzmania lingulata were investigated in a lowland tropical forest in Costa Rica and a shaded glasshouse in Los Angeles, CA, USA. Stomatal conductance to water vapor and leaf anatomical variables related to hydraulic conductance were measured for both groups. Tracheid diameters and numbers of vascular bundles (veins) were used with the Hagen–Poiseuille equation to calculate axial hydraulic conductance. Measurements of leaf hydraulic conductance using the evaporative flux method were also made for glasshouse plants. Values for axial conductance and leaf hydraulic conductance were used in a model based on leaky cable theory to estimate the conductance of the radial pathway from the vein to the leaf surface and to assess the relative contributions of both axial and radial pathways. In keeping with low stomatal conductance, low stomatal density, low vein density, and narrow tracheid diameters, leaf hydraulic conductance for G. lingulata was quite low in comparison with most other angiosperms. Using the predicted axial conductance in the leaky cable model, the radial resistance across the leaf mesophyll was predicted to predominate; lower, more realistic values of axial conductance resulted in predicted radial resistances that were closer to axial resistance in their impact on total leaf resistance. Tracer dyes suggested that water uptake through the tank region of the leaf was not limiting. Both dye movement and the leaky cable model indicated that the leaf blade of G. lingulata was structurally and hydraulically well-suited to conserve water.
The synthesis, characterization, and photophysical properties of 4and 6-coordinate Bi 3+ coordination complexes are reported. Bi(bzq) 3 ( 1) and [Bi(bzq) 2 ]Br (2) (bzq = benzo[h]quinoline) are synthesized by reaction of 9-Libzq with BiCl 3 and BiBr 3 , respectively. Absorption spectroscopy, electrochemistry, and DFT studies suggest that 1 has 42% Bi 6s character in its highest-occupied molecular orbital (HOMO) as a result of six σ* interactions with the bzq ligands. Excitation of 1 at 450 nm results in a broad emission feature at 520 nm, which is rationalized as a metal-to-ligand charge transfer (MLCT) and phosphorescent emission resulting from bismuth-mediated intersystem crossing (ISC) to a triplet excited state. This excited state revealed a 35 μs lifetime and was quenched in the presence of oxygen. These results demonstrate that useful optoelectronic properties of Bi 3+ can be accessed through hypercoordination with covalent organobismuth interactions that mimic the electronic structure of lead perovskites.
The assembly and testing of a rechargeable 3 V lithium-ion battery in the common 2032 coin cell format is demonstrated in a classroom environment without the use of expensive and complex air-free equipment. The procedure has been developed to eliminate the use of highly toxic materials and flammable solvents, can be accomplished in 15 min, and is designed to be as inexpensive, safe, and simple as possible. The battery can be repeatedly charged with a cheap USB-powered charger and can be used to power an LED tea candle or similar device. A stopwatch and multimeter can be used to estimate the capacity and voltage of the battery. This demonstration offers a memorable, real-world application of electrochemical principles and gives students practical insight into the chemistry and construction of a lithium-ion battery.
We compared the effects of different light environments on leaf hydraulic conductance (Kleaf ) for two congeneric epiphytes, the tank bromeliads Guzmania lingulata (L.) Mez and Guzmania monostachia (L.) Rusby ex Mez. They occur sympatrically at the study site, although G. monostachia is both wider ranging and typically found in higher light. We collected plants from two levels of irradiance and measured Kleaf as well as related morphological and anatomical traits. Leaf xylem conductance (Kxy ) was estimated from tracheid dimensions, and leaf conductance outside the xylem (Kox ) was derived from a leaky cable model. For G. monostachia, but not for G. lingulata, Kleaf and Kxy were significantly higher in high light conditions. Under both light conditions, Kxy and Kox were co-limiting for the two species, and all conductances were in the low range for angiosperms. With respect to hydraulic conductances and a number of related anatomical traits, G. monostachia exhibited greater plasticity than did G. lingulata, which responded to high light chiefly by reducing leaf size. The positive plasticity of leaf hydraulic traits in varying light environments in G. monostachia contrasted with negative plasticity in leaf size for G. lingulata, suggesting that G. monostachia may be better able to respond to forest conditions that are likely to be warmer and more disturbed in the future.
The need for expanded energy storage motivates material development for scalable aqueous secondary batteries. The combination of transition metals with redox-active organics represents a new approach to functional material design. Here, we detail the synthesis of titanium(IV) 1,8-dihydroxyanthraquinone (Ti(1,8-DHAQ)2) as a novel redox-active material and demonstrate its use as a negative electrode in an aqueous battery. This one-pot synthesis results in amorphous micron-scale particles with titanium binding directly to the carbonyl feature as evidenced by scanning electron microscopy and infrared spectroscopy. When assembled in a coin cell with a lithium manganese oxide positive electrode, the active material can be electrochemically cycled with a charge density of 40 mAh/g at 1.1 V. This represents a new method of creating simple and scalable electrodes using metal-organic materials for versatile energy storage applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.