Ethical and moral issues rule out the use of human induced pluripotent stem cells (iPSCs) in chimera studies that would determine the full extent of their reprogrammed state, instead relying on less rigorous assays such as teratoma formation and differentiated cell types. To date, only mouse iPSC lines are known to be truly pluripotent. However, initial mouse iPSC lines failed to form chimeric offspring, but did generate teratomas and differentiated embryoid bodies, and thus these specific iPSC lines were not completely reprogrammed or truly pluripotent. Therefore, there is a need to address whether the reprogramming factors and process used eventually to generate chimeric mice are universal and sufficient to generate reprogrammed iPSC that contribute to chimeric offspring in additional species. Here we show that porcine mesenchymal stem cells transduced with 6 human reprogramming factors (POU5F1, SOX2, NANOG, KLF4, LIN28, and C-MYC) injected into preimplantation-stage embryos contributed to multiple tissue types spanning all 3 germ layers in 8 of 10 fetuses. The chimerism rate was high, 85.3% or 29 of 34 live offspring were chimeras based on skin and tail biopsies harvested from 2- to 5-day-old pigs. The creation of pluripotent porcine iPSCs capable of generating chimeric offspring introduces numerous opportunities to study the facets significantly affecting cell therapies, genetic engineering, and other aspects of stem cell and developmental biology.
Human embryonic stem cells (hESC) have the potential to produce all of the cells in the body. They are able to self-renew indefinitely, potentially making them a source for large-scale production of therapeutic cell lines. Here, we developed a monolayer differentiation culture that induces hESC (WA09 and BG01) to form epithelial sheets with mesodermal gene expression patterns (BMP4, RUNX1, and GATA4). These E-cadherin+ CD90low cells then undergo apparent epithelial-mesenchymal transition for the derivation of mesenchymal progenitor cells (hESC-derived mesenchymal cells [hES-MC]) that by flow cytometry are negative for hematopoietic (CD34, CD45, and CD133) and endothelial (CD31 and CD146) markers, but positive for markers associated with mesenchymal stem cells (CD73, CD90, CD105, and CD166). To determine their functionality, we tested their capacity to produce the three lineages associated with mesenchymal stem cells and found they could form osteogenic and chondrogenic, but not adipogenic lineages. The derived hES-MC were able to remodel and contract collagen I lattice constructs to an equivalent degree as keloid fibroblasts and were induced to express alpha-smooth muscle actin when exposed to transforming growth factor (TGF)-beta1, but not platelet derived growth factor-B (PDGF-B). These data suggest that the derived hES-MC are multipotent cells with potential uses in tissue engineering and regenerative medicine and for providing a highly reproducible cell source for adult-like progenitor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.