In data processing time series of meteorological data problems, you are incomplete in some time intervals; it addresses the issue commonly using the autoregressive integrated moving average (ARIMA) or the method by regression analysis (interpolation), both with certain limitations under particular conditions. This paper presents the results of an investigation aimed at solving the problem using neural networks reported. The analysis of a time series of global radiation obtained at the Francisco de Paula Santander University (UFPS) is presented, with basis in the recorded data by the weather station attached to the Department of Fluids and Thermals. Having a series of ten-year study for 125,658 records of temperature, radiation and energy with a percentage of 9.98 missing data, which were duly cleared and completed by a neural network using algorithms backpropagation in the mathematical software MATLAB
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.