Cancer-induced immune responses affect tumor progression and therapeutic response. In multiple murine models and clinical datasets, we identified large variations of neutrophils and macrophages, which define “immune subtypes” of triple negative breast cancer (TNBC) including neutrophil-enriched (NES) and macrophage-enriched subtypes (MES). Different tumor-intrinsic pathways and mutual regulation between macrophages/monocytes and neutrophils contribute to the development of dichotomous myeloid compartment. MES contains predominantly macrophages that are CCR2-dependent and exhibit variable responses to immune checkpoint blockade (ICB). NES exhibits systemic and local accumulation of immunosuppressive neutrophils (or granulocytic myeloid-derived suppressor cells (gMDSCs), is resistant to ICB, and contains a minority of macrophages that appear to be unaffected by CCR2 knockout. A MES-to-NES conversion mediated acquired ICB resistance of initially sensitive MES models. Our results demonstrate diverse myeloid cell frequencies, functionality, and potential roles in immunotherapies, and highlight the need to better understand the inter-patient heterogeneity of the myeloid compartment.
Spontaneous DNA breaks instigate genomic changes that fuel cancer and evolution, yet direct quantification of double-strand breaks (DSBs) has been limited. Predominant sources of spontaneous DSBs remain elusive. We report synthetic technology for quantifying DSBs using fluorescent-protein fusions of double-strand DNA end-binding protein, Gam of bacteriophage Mu. In Escherichia coli GamGFP forms foci at chromosomal DSBs and pinpoints their subgenomic locations. Spontaneous DSBs occur mostly one per cell, and correspond with generations, supporting replicative models for spontaneous breakage, and providing the first true breakage rates. In mammalian cells GamGFP—labels laser-induced DSBs antagonized by end-binding protein Ku; co-localizes incompletely with DSB marker 53BP1 suggesting superior DSB-specificity; blocks resection; and demonstrates DNA breakage via APOBEC3A cytosine deaminase. We demonstrate directly that some spontaneous DSBs occur outside of S phase. The data illuminate spontaneous DNA breakage in E. coli and human cells and illustrate the versatility of fluorescent-Gam for interrogation of DSBs in living cells.DOI: http://dx.doi.org/10.7554/eLife.01222.001
An improved understanding of the biochemical alterations that accompany tumor progression and metastasis is necessary to inform the next generation of diagnostic tools and targeted therapies. Metabolic reprogramming is known to occur during the epithelial-mesenchymal transition (EMT), a process that promotes metastasis. Here, we identify metabolic enzymes involved in extracellular Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Smoking is a major risk factor for the development of Bladder Cancer (BLCA); however, the functional consequences of the carcinogens in tobacco smoke and BLCA-associated metabolic alterations remains poorly defined. We assessed the metabolic profiles in BLCA smokers and non-smokers, and identified the key alterations in their metabolism. Liquid Chromatography – Mass Spectrometry (LC-MS), and bioinformatic analysis were performed to determine the metabolome associated with BLCA smokers and were further validated in cell line models. Smokers with BLCA were found to have elevated levels of methylated metabolites, polycyclic aromatic hydrocarbons (PAHs), DNA adducts and DNA damage. DNA methyltransferase 1 (DNMT1) expression was significantly higher in smokers than non-smokers with BLCA. An integromics approach, using multiple patient cohorts, revealed strong associations between smokers and high-grade BLCA. In vitro exposure to the tobacco smoke carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (BaP) led to increase in levels of methylated metabolites, DNA adducts, and extensive DNA damage in BLCA cells. Co-treatment of BLCA cells with these carcinogens and the methylation inhibitor 5-aza-2′-deoxycytidine (AZA) rewired the methylated metabolites, DNA adducts, DNA damage. These findings were confirmed through the isotopic labeled metabolic flux analysis. Screens using smoke associated metabolites and DNA adducts could provide robust biomarkers and improve individual risk prediction in BLCA smokers. Non-invasive predictive biomarkers that can stratify the risk of developing BLCA in smokers could aid in early detection and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.