The release of iron from transferrin was investigated by incubating the diferric protein in the presence of potential iron-releasing agents. The effective chemical group appears to be pyrophosphate, which is present in blood cells as nucleoside di- and triphosphates, notably adenosine triphosphate (ATP). An alternative structure with comparable activity is represented by 2,3-diphosphoglycerate. Neither 1 mM adenosine monophosphate (AMP) nor 1 mM orthophosphate released iron from transferrin. The ATP-induced iron-releasing activity was dependent on weak acidic conditions and was sensitive to temperature and sodium chloride concentration. The rate of iron release rapidly increased as transferrin was titrated with HCl from pH 6.8 to 6.1 in the presence of 1 mM ATP and 160 mM NaCl at 20 degrees C. Iron release from transferrin without ATP was observed below pH 5.5. Ascorbate (10(-4) M) reduced Fe(III), but only after iron release from transferrin by a physiological concentration of ATP. A proposal for the mechanism of iron release from transferrin by ATP and the utilization of reduced iron by erythroid cells is described.
This study has analyzed the role of several serum constituents, that have been proposed to effect the following reactionin situ: {fx1-1} {fx1-2} These reactions were monitored by measuring the rate of Fe(II) oxidation in the presence of apo-transferrin (reaction A) and Fe(III)-transferrin formation (reaction B) at 465 nm. Reactions A and B were found to be kinetically equivalent. The results show that, singly or in combination, bicarbonate, orthophosphate, citrate, apo-transferrin, and/or albumin have less than one-tenth of the ability to enhance the oxidation of Fe(II) compared to the serum enzyme, ceruloplasmin. It was also found that the rate of Fe(II) oxidation by serum Fe-ligands was influenced by the efficiency of oxygen utilization. Whereas ceruloplasmin produces a 4∶1 ratio of Fe(II) oxidized to oxygen utilized, the non-enzymic components yield a 2∶1 or 3.09∶1 ratio. These data support the role of ceruloplasmin as an antioxidant that prevents the formation of the intermediate active oxygen species O 2 (-) · and H2O 2 (·) through the Fe(II) auto-oxidation reaction.A hitherto unrecognized factor in the control of nonenzymic oxidation of Fe(II) was serum albumin. This protein, at >25 μM, was found to sharply dampen the rate of Fe(II) oxidation in the presence of a physiological concentration of bicarbonate, citrate, and transferrin Albumin did not appear to affect the ceruloplasmin catalyzed oxidation of Fe(II) at pH 7.0. The addition of ceruloplasmin effected up to a 44 × increase in the rate of Fe(II) oxidation and Fe(III)-transferrin formation even in the presence of 0.60 mM albumin.
A new in vitro technique has been described for demonstrating the presence of an erythropoietic factor in the circulating blood of frogs. The assay system consisted of MC33 medium, erythropoietically active spleen cells from Rana pipiens, and plasma or serum from frogs made anemic via phenylhydrazine or bleeding. The spleen cells, which remain erythropoietically active for up to nine days, were found to incorporate 59Fe, [3H]thymidine, [3H]uridine, and [3H]leucine at a greater rate in the presence of plasma or serum from anemic versus normal frogs. The hormones triiodothyronine, prolactin, and erythropoietin were not effective in eliciting an hemopoietic response. The data presented suggest that the spleen from that adult frog is a major site of erythroid differentiation and maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.