A significant role for nitric oxide (NO) in proximal tubule physiology and pathophysiology has been revealed by a series of in vivo and in vitro studies. Whether the proximal tubule produces NO under basal conditions is still controversial; however, evidence suggests that the proximal tubule is constantly exposed to NO that might include NO from nonproximal tubule sources. When challenged with a variety of stimuli, including hypoxia, the proximal tubule is able to produce large quantities of NO. In vivo studies generally indicate that NO inhibits fluid and sodium reabsorption by the proximal tubule. However, the final effect of NO on proximal tubular reabsorption appears to depend on the concentration of NO and involve interaction with other regulatory mechanisms. NO regulates Na(+)-K(+)-ATPase, Na(+)/H(+) exchangers, and paracellular permeability of proximal tubular cells, which may contribute to its effect on proximal tubular transport. Enhanced production of NO, perhaps depending on macrophage type inducible NO synthase, participates in hypoxic/ischemic proximal tubular injury. In conclusion, NO plays a fundamental role in both physiology and pathophysiology of the proximal tubule.
Increased release of renal adenosine and stimulation of renal adenosine receptors have been proposed to be major mechanisms in the development of contrast media-induced acute renal failure (CM-ARF). Patients with diabetes mellitus or preexisting renal disease who have reduced renal function have a markedly increased risk to develop CM-ARF. This increased risk to develop CM-ARF in patients with diabetes mellitus is linked to a higher sensitivity of the renal vasculature to adenosine, since experimental studies have shown increased adenosine-induced vasoconstriction in the kidneys of diabetic animals. Furthermore, recent evidence suggests that administration of adenosine receptor antagonists reduces the risk of development of CM-ARF in both diabetic and nondiabetic patients. The purpose of this review is to discuss the role of adenosine in the development of CM-ARF, particularly in the kidneys of diabetic patients, and to evaluate the therapeutic potential of adenosine receptor antagonists in the prevention of CM-ARF. Selective adenosine A1 receptor antagonists may provide a therapeutic tool to prevent CM-ARF in patients with diabetes mellitus and reduced renal function.
Studies were performed on anesthetized dogs to determine the relationship of interstitial pressure to sodium excretion during renal vein constriction in the presence and absence of volume expansion. Renal interstitial pressure was measured from implanted capsules during basal renal venous pressure and increased pressures of 10, 20, 30, and 40 mmHg. A positive relationship between renal venous pressure and interstitial pressure was demonstrated in hydropenia and in volume expansion, with markedly higher interstitial pressures obtained in volume expansion. A positive correlation was demonstrated between fractional sodium excretion and renal interstitial pressure in hydropenia as compared to a significant negative correlation in volume expansion. Negative correlations were demonstrated in volume expansion between renal interstitial pressure and glomerular filtration rate and renal blood flow as compared to no significant change in these parameters in hydropenia. Accordingly, a positive correlation was demonstrated between renal interstitial pressure and sodium excretion in hydropenia but not in volume expansion. Volume expansion was characterized by higher interstitial pressure and decreased sodium excretion in association with decreased renal blood flow and glomerular filtration rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.