Oncogenic human papillomavirus (HPV) is a causative agent in a subgroup of head and neck carcinomas, particularly tonsillar squamous cell carcinomas (TSCC). This study was undertaken because controversial data exist on the physical status of HPV-DNA and the use of p16INK4A overexpression as surrogate HPV marker, and to examine the impact of HPV and tobacco consumption on the clinical course of TSCC. Tissue sections of 81 TSCC were analyzed by HPV 16-specific fluorescence in situ hybridization (FISH) Head and neck squamous cell carcinomas (HNSCC) account for 4% of all malignancies in the Western world, for up to 50% of all malignancies in Southeast Asian countries and for 6.5% of all annual cancer cases worldwide.1 HNSCC is associated with severe disease-and treatment-related morbidity and because treatment has not improved greatly in recent years, the 5-year survival rate remains 50%. HNSCC develop in various anatomical defined regions, including the oral cavity, larynx and pharynx. These organ-specific tumors each show specific clinical presentations and outcome, and are treated by different strategies. 2,3 The median age at presentation is 60 years and approximately two-third of patients are male. Well-known risk factors in the etiology of HNSCC are cigarette smoking combined with alcohol consumption in Western countries, or with betel quid chewing in Asia. A history of tobacco use is present in 90% of patients who develop oral cavity cancers. 2,3Despite these evident associations, the exact mechanisms by which these factors cause tumor initiation and progression are not fully understood. Furthermore, the fact that most tobacco and alcohol users do not develop HNSCC and that in recent years more often individuals without a history of these traditional risk factors have been witnessed, 4 underlines the complexity of HNSCC pathogenesis and a role for additional factors in the disease process.Increasing evidence suggests that human oncogenic papillomaviruses (HPVs), known to cause uterine cervical and other anogenital cancers, may also be of importance in the pathogenesis of HNSCC. 5 The strongest association has been found for oropharyngeal carcinomas, especially tonsillar carcinomas.6-11 Sero-positive patients for HPV 16 or with a history of HPV-related anogenital cancer also show increased risk rates of developing oropharyngeal cancer.12,13 The prevalence of HPV-exhibiting HNSCC, however, varies broadly amongst several studies (2-76%) due to differences in the population, combination of histological subsites, type and number of specimens analyzed, and detection methods used. 7,14 Thus, besides determining the presence of HPV DNA it has been suggested to better define the biological association of oncogenic HPV with these tumors, e.g., by means of assessing the viral copy number per cell, the viral oncoprotein E6/E7 expression levels, perturbation of pRb-dependent cell cycle control, or the physical status of the virus (episomal or integrated). 15 In this way, several reports have shown that HPV 16 is predomi...
The cytochrome P450 14α-demethylase, encoded by the ERG11 (CYP51) gene, is the primary target for the azole class of antifungals. Changes in the azole affinity of this enzyme caused by amino acid substitutions have been reported as a resistance mechanism. Nine Candida albicans strains were used in this study. The ERG11 base sequence of seven isolates, of which only two were azole-sensitive, were determined. The ERG11 base sequences of the other two strains have been published previously. In these seven isolates, 12 different amino acid substitutions were identified, of which six have not been described previously (A149V, D153E, E165Y, S279F, V452A and G465S). In addition, 16 silent mutations were found. Two different biochemical assays, subcellular sterol biosynthesis and CO binding to reduced microsomal fractions, were used to evaluate the sensitivity of the cytochromes for fluconazole and itraconazole. Enzyme preparations from four isolates showed reduced itraconazole susceptibility, whereas more pronounced resistance to fluconazole was observed in five isolates. A three-dimensional model of C. albicans Cyp51p was used to position all 29 reported substitutions, 98 in total identified in 53 sequences. These 29 substitutions were not randomly distributed over the sequence but clustered in three regions from amino acids 105 to 165, from 266 to 287 and from 405 to 488, suggesting the existence of hotspot regions. Of the mutations found in the two N-terminal regions only Y132H was demonstrated to be of importance for azole resistance. In the Cterminal region three mutations are associated with resistance, suggesting that the non-characterized substitutions found in this region should be prioritized for further analysis.
Abstract. The characterization of a novel 59-kD cytoskeletal protein is described. It is exclusively observed in smooth muscle cells by Northern blotting and immunohistochemical analysis and therefore designated "smoothelin." A human smooth muscle cDNA library was screened with the monoclonal antibody R4A, and a full-size cDNA of the protein was selected. The cDNA was sequenced and appeared to contain a 1,113-bp open reading frame. Based on the cDNA sequence, the calculated molecular weight of the polypeptide was 40 kD and it was demonstrated to contain two N-glycosylation sites. Computer assisted analysis at the protein level revealed a 56-amino acid domain with homologies of ~40% with a sequence bordering the actin-binding domains of dystrophin, utrophin, [3-spectrin and a-actinin. In situ hybridization demonstrated that human smoothelin is encoded by a single copy gene which is located on chromosome 22. Immunohistochemistry and Western blotting revealed synthesis of smoothelin in smooth muscle of species evolutionarily as far apart as human and teleost. Northern blotting indicated that sequence as well as size of the mRNA (~1,500 bases) are conserved among vertebrates. Cell fractionation studies and differential centrifugation showed that the protein cannot be extracted with Triton X-100, which indicates that it is a part of the cytoskeleton. Transfection of the human cDNA into smooth muscle cells and COS7 cells produced a protein of 59 kD, which assembled into a filamentous network. However, in rat heart-derived myoblasts association with stress fibers was most prominent. Smoothelin was not detected in primary or long term smooth muscle cell cultures. Also, transcription of smoothelin mRNA was almost instantly halted in smooth muscle tissue explants. We conclude that smoothelin is a new cytoskeletal protein that is only found in contractile smooth muscle cells and does not belong to one of the classes of structural proteins presently known.
Methods for single- and double-target in situ hybridization (ISH) to, cells isolated from solid transitional cell carcinomas (TCC's) of the urinary bladder are described. Single cell suspensions were prepared from solid tumors of the urinary bladder by mechanical disaggregation and fixed in 70% ethanol. Using two DNA probes specific for the centromeres of chromosomes #1 and #18, ISH procedures were optimized for these samples. Human lymphocytes and cells from the T24 bladder tumor cell line were used as controls. In lymphocyte nuclei and metaphase chromosome spreads, ISH showed two major spots for each of the probes. About 80% of the nuclei from T24 cells showed three spots for both the chromosome #1 and #18 specific probes. When nuclei from TCC's were analyzed, often the number of spots for chromosome #1, and to a lesser extent for chromosome #18, differed from the number expected on basis of flow cytometric ploidy measurements. The double target-ISH method in all cases allowed the correlation of numerical aberrations for chromosomes #1 and #18 in one and the same cell. By such analyses a profound heterogeneity in chromosome number was detected in most tumors. In order to optimize the reproducibility of the method and the interpretation of the ISH-signals, criteria for their analysis have been determined. This procedure can now be applied on a routine basis to solid tumor specimens.
A one-step procedure for the synthesis of different tyramide conjugates, which can be utilized in the catalyzed reporter deposition (CARD) amplification system, is described. Succinimidyl esters of biotin, digoxigenin, and of the fluorochromes fluorescein, rhodamine, aminomethylcoumarine acetic acid, and Cy3 were coupled to tyramine in dimethylformamide (DMF) adjusted to a pH of 7.0-8.0 with triethylamine (TEA). The coupling reaction can be performed within 2 hr and the reaction mixture can be applied without further purification steps. Furthermore, trinitrophenyl (TNP)-tyramide was prepared by adding 2,4,6,-trinitrobenzenesulfonic acid to tyramine dissolved in either MilliQ/DMF basified with TEA or in an NaHCO3 (pH 9.5) buffer. A subsequent precipitation of the TNP-tyramide resulted in a high-yield isolation of this conjugate. The synthesized tyramide conjugates were applied successfully in single- and multiple-target in situ hybridization (ISH) procedures to detect both repetitive and single-copy DNA target sequences in cell preparations with high efficiency. The described approach provides an easy and fast method to prepare a variety of tyramide conjugates in bulk amounts at relatively low cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.