Single-mode fibres with low loss and a large transmission bandwidth are a key enabler for long-haul high-speed optical communication and form the backbone of our information-driven society. However, we are on the verge of reaching the fundamental limit of single-mode fibre transmission capacity. Therefore, a new means to increase the transmission capacity of optical fibre is essential to avoid a capacity crunch. Here, by employing few-mode multicore fibre, compact three-dimensional waveguide multiplexers and energy-efficient frequency-domain multiple-input multiple-output equalization, we demonstrate the viability of spatial multiplexing to reach a data rate of 5.1 Tbit s −1 carrier −1 (net 4 Tbit s −1 carrier −1 ) on a single wavelength over a single fibre. Furthermore, by combining this approach with wavelength division multiplexing with 50 wavelength carriers on a dense 50 GHz grid, a gross transmission throughput of 255 Tbit s −1 (net 200 Tbit s −1 ) over a 1 km fibre link is achieved. W ith the persistent exponential growth in Internet-driven traffic, the backbone of our information-driven society, based on single-mode fibre (SMF) transmission, is rapidly approaching its fundamental capacity limits 1 . In the past, capacity increases in SMF transmission systems have been achieved by exploiting various dimensions, including polarization and wavelength division multiplexing, in tandem with advanced modulation formats and coherent transmission techniques 2 . However, the impending capacity crunch implies that carriers are lighting up dark fibres at an exponentially increasing rate to support societal capacity demands 3 . To alleviate the corresponding costs and increased energy requirements associated with the linear capacity scaling from using additional SMFs, spatial division multiplexing (SDM) within a single fibre can provide a solution 4,5 . By introducing an additional orthogonal multiplexing dimension, the capacity, spectral and energy efficiency, and therefore the cost per bit, can be decreased, which is vital for sustaining the business model of major network stakeholders. To fulfil the SDM promise, a new paradigm is envisaged that allows up to two orders of magnitude capacity increase with respect to SMFs 6 . SDM is achieved through multiple-input multiple-output (MIMO) transmission, employing the spatial modes of a multimode fibre (MMF) 7 , or multiple single-mode cores, as channels 8-13 . Recently, a distinct type of MMF, the few-mode fibre (FMF), has been developed to co-propagate three or six linear polarized (LP) modes 14-17 . Driven by rapid enhancements in high-speed electronics, digital signal processing (DSP) MIMO techniques can faithfully recover mixed transmission channels 18 , allowing spectral efficiency increases as spatial channels occupy the same wavelength. State-of-the-art single-carrier FMF transmission experiments have demonstrated capacity increases in a single fibre by exploiting six spatial modes, achieving 32 bit s −1 Hz −1 spectral efficiency 17 . By using multicore transmissi...
We present a 1 2 all-optical packet switch. All the processing of the header information is carried out in the optical domain. The optical headers are recognized by employing the two-pulse correlation principle in a semiconductor laser amplifier in loop optical mirror (SLALOM) configuration. The processed header information is stored in an optical flip-flop memory that is based on a symmetric configuration of two coupled lasers. The optical flip-flop memory drives a wavelength routing switch that is based on cross-gain modulation in a semiconductor optical amplifier. We also present an alternative optical packet routing concept that can be used for all-optical buffering of data packets. In this case, an optical threshold function that is based on a asymmetric configuration of two coupled lasers is used to drive a wavelength routing switch. Experimental results are presented for both the 1 2 optical packet switch and the optical buffer switch. Index Terms-Optical flip-flop memories, optical header recognizing, optical packet switching, optical signal processing, wavelength conversion.
DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Abstract-We demonstrate novel optical signal processing functions based on self-induced nonlinear polarization rotation in a semiconductor optical amplifier (SOA). Numerical and experimental results are presented, which demonstrate that a nonlinear polarization switch can be employed to achieve all-optical logic. We demonstrate an all-optical header processing system, an all-optical seed pulse generator for packet synchronization, and an all-optical arbiter that can be employed for optical buffering at a bit rate of 10 Gb/s. Experimental results indicate that optical signal processing functions based on self-polarization rotation have a higher extinction ratio and a lower power operation compared with similar functions based on self-phase modulation.Index Terms-Nonlinear polarization switch (NPS), optical arbiter, optical buffering, optical header processor, optical self-synchronization, optical signal processing, self-induced effects, semiconductor optical amplifier (SOA).
Abstract-Mode group diversity multiplexing (MGDM) is an optical multiple-input-multiple-output technique that aims at creating independent communication channels over a multimode fiber, using subsets of propagating modes. This letter deals with the analysis of an MGDM point-to-point link, transparent to the transmission format. The geometry of a mode-group selective multi/demultiplexer is optimized in order to minimize the crosstalk among the channels. The power penalty is calculated when a zero-forcing algorithm is used to mitigate the crosstalk.Index Terms-Graded-index multimode fiber (GI-MMF), mode group diversity multiplexing (MGDM), optical multiple-input-multiple-output (MIMO), transparent optical link.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.