A very short and efficient synthesis of the important drug candidate telaprevir, featuring a biocatalytic desymmetrization and two multicomponent reactions as the key steps, is presented. The classical issue of lack of stereoselectivity in Ugi- and Passerini-type reactions is circumvented. The atom economic and convergent nature of the synthetic strategy require only very limited use of protective groups.
Time and pep‐tide wait for no man: Optically pure 3,4‐disubstituted 1‐pyrrolines, generated from the corresponding meso‐pyrrolidines by biocatalytic desymmetrization (MAO‐N=monoamine oxidase N), react with carboxylic acids and isocyanides in a highly diastereoselective Ugi‐type multicomponent reaction to give substituted prolyl peptides of high pharmaceutical relevance.
Hit optimization of the class of quinazoline containing histamine H(4) receptor (H(4)R) ligands resulted in a sulfonamide substituted analogue with high affinity for the H(4)R. This moiety leads to improved physicochemical properties and is believed to probe a distinct H(4)R binding pocket that was previously identified using pharmacophore modeling. By introducing a variety of sulfonamide substituents, the H(4)R affinity was optimized. The interaction of the new ligands, in combination with a set of previously published quinazoline compounds, was described by a QSAR equation. Pharmacological studies revealed that the sulfonamide analogues have excellent H(4)R affinity and behave as inverse agonists at the human H(4)R. In vivo evaluation of the potent 2-(6-chloro-2-(4-methylpiperazin-1-yl)quinazoline-4-amino)-N-phenylethanesulfonamide (54) (pK(i) = 8.31 +/- 0.10) revealed it to have anti-inflammatory activity in an animal model of acute inflammation.
A series of 3,4-methylenedioxy-N-alkylamphetamines (MDAAs) were automatically docked and subjected to molecular dynamics (MD) simulations in a cytochrome P450 2D6 (CYP2D6) protein model. The predicted substrate binding orientations, sites of oxidation, and relative reactivities were compared to the experimental data of wild-type and Phe120Ala mutant CYP2D6. Automated docking results were not sufficient to accurately rationalize experimental binding orientations of 3,4-methylenedioxy-N-methylamphetamine (MDMA) in the two enzymes as measured with spin lattice relaxation NMR. Nevertheless, the docking results could be used as starting structures for MD simulations. Predicted binding orientations of MDMA and sites of oxidation of the MDAAs derived from MD simulations matched well with the experimental data. It appeared the experimental results were best described in MD simulations considering the nitrogen atoms of the MDAAs in neutral form. Differences in regioselectivity and stereoselectivity in the oxidative metabolism of the MDAAs by the Phe120Ala mutant CYP2D6 were correctly predicted, and the effects of the Phe120Ala mutation could be rationalized as well.
[reaction: see text] The three-component condensation between an amine, an aldehyde, and an alpha-acidic isocyanide efficiently provides substituted 2-imidazolines in a one-pot reaction under mild conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.