This review is concerned with evaluating the toxicity associated with human exposure to silver and gold nanoparticles (NPs), due to the relative abundance of toxicity data available for these particles, when compared to other metal particulates. This has allowed knowledge on the current understanding of the field to be gained, and has demonstrated where gaps in knowledge are. It is anticipated that evaluating the hazards associated with silver and gold particles will ultimately enable risk assessments to be completed, by combining this information with knowledge on the level of human exposure. The quantity of available hazard information for metals is greatest for silver particulates, due to its widespread inclusion within a number of diverse products (including clothes and wound dressings), which primarily arises from its antibacterial behaviour. Gold has been used on numerous occasions to assess the biodistribution and cellular uptake of NPs following exposure. Inflammatory, oxidative, genotoxic, and cytotoxic consequences are associated with silver particulate exposure, and are inherently linked. The primary site of gold and silver particulate accumulation has been consistently demonstrated to be the liver, and it is therefore relevant that a number of in vitro investigations have focused on this potential target organ. However, in general there is a lack of in vivo and in vitro toxicity information that allows correlations between the findings to be made. Instead a focus on the tissue distribution of particles following exposure is evident within the available literature, which can be useful in directing appropriate in vitro experimentation by revealing potential target sites of toxicity. The experimental design has the potential to impact on the toxicological observations, and in particular the use of excessively high particle concentrations has been observed. As witnessed for other particle types, gold and silver particle sizes are influential in dictating the observed toxicity, with smaller particles exhibiting a greater response than their larger counterparts, and this is likely to be driven by differences in particle surface area, when administered at an equal-mass dose. A major obstacle, at present, is deciphering whether the responses related to silver nanoparticulate exposure derive from their small size, or particle dissolution contributes to the observed toxicity. Alternatively, a combination of both may be responsible, as the release of ions would be expected to be greater for smaller particles.
This critical review of the available human health safety data, relating to carbon nanotubes (CNTs), was conducted in order to assess the risks associated with CNT exposure. Determining the toxicity related to CNT exploitation is of great relevance and importance due to the increased potential for human exposure to CNTs within occupational, environmental and consumer settings. When this information is combined with knowledge on the likely exposure levels of humans to CNTs, it will enable risk assessments to be conducted to assess the risks posed to human health. CNTs are a diverse group of materials and vary with regards to their wall number (single and multi-walled CNTs are evident), length, composition, and surface chemistry. The attributes of CNTs that were identified as being most likely to drive the observed toxicity have been considered, and include CNT length, metal content, tendency to aggregate/agglomerate and surface chemistry. Of particular importance, is the contribution of the fibre paradigm to CNT toxicity, whereby the length of CNTs appears to be critical to their toxic potential. Mechanistic processes that are critical to CNT toxicity will also be discussed, with the findings insinuating that CNTs can exert an oxidative response that stimulates inflammatory, genotoxic and cytotoxic consequences. Consequently, it may transpire that a common mechanism is responsible for driving CNT toxicity, despite the fact that CNTs are a diverse population of materials. The similarity of the structure of CNTs to that of asbestos has prompted concern surrounding the exposure of humans, and so the applicability of the fibre paradigm to CNTs will be evaluated. It is also necessary to determine the systemic availability of CNTs following exposure, to determine where potential targets of toxicity are, and to thereby direct in vitro investigations within the most appropriate target cells. CNTs are therefore a group of materials whose useful exploitable properties prompts their increased production and utilization within diverse applications, so that ensuring their safety is of vital importance.
This review provides a comprehensive critical review of the available literature purporting to assess the toxicity of carbon fullerenes. This is required as prior to the widespread utilization and production of fullerenes, it is necessary to consider the implications of exposure for human health. Traditionally, fullerenes are formed from 60 carbon atoms, arranged in a spherical cage-like structure. However, manipulation of surface chemistry and molecular makeup has created a diverse population of fullerenes, which exhibit drastically different behaviors. The cellular processes that underlie observed fullerene toxicity will be discussed and include oxidative, genotoxic, and cytotoxic responses. The antioxidant/cytoprotective properties of fullerenes (and the attributes responsible for driving these phenomena) have been considered and encourage their utilization within the treatment of oxidant-mediated disease. A number of studies have focused on improving the water solubility of fullerenes in order to enable their exploitation within biological systems. Manipulating fullerene water solubility has included the use of surface modifications, solvents, extended stirring, and mechanical processes. However, the ability of these processes to also impact on fullerene toxicity requires assessment, especially when considering the use of solvents, which particularly appear to enhance fullerene toxicity. A number of the discussed investigations were not conducted to reveal if fullerene behavior was due to their nanoparticle dimensions but instead addressed the biocompatibility and toxicity of fullerenes. The hazards to human health, associated with fullerene exposure, are uncertain at this time, and further investigations are required to decipher such effects before an effective risk assessment can be conducted.
This review focuses on outlining the toxicity of titanium dioxide (TiO2) particulates in vitro and in vivo, in order to understand their ability to detrimentally impact on human health. Evaluating the hazards associated with TiO2 particles is vital as it enables risk assessments to be conducted, by combining this information with knowledge on the likely exposure levels of humans. This review has concentrated on the toxicity of TiO2, due to the fact that the greatest number of studies by far have evaluated the toxicity of TiO2, in comparison to other metal oxide particulates. This derives from historical reasons (whereby the size dependency of particulate toxicity was first realised for TiO2) and due to its widespread application within consumer products (such as sunscreens). The pulmonary and dermal hazards of TiO2 have been a particular focus of the available studies, due to the past use of TiO2 as a (negative) control when assessing the pulmonary toxicity of particulates, and due to its incorporation within consumer products such as sunscreens. Mechanistic processes that are critical to TiO2 particulate toxicity will also be discussed and it is apparent that, in the main, the oxidant driven inflammatory, genotoxic and cytotoxic consequences associated with TiO2 exposure, are inherently linked, and are evident both in vivo and in vitro. The attributes of TiO2 that have been identified as being most likely to drive the observed toxicity include particle size (and therefore surface area), crystallinity (and photocatalytic activity), surface chemistry, and particle aggregation/agglomeration tendency. The experimental set up also influences toxicological outcomes, so that the species (or model) used, route of exposure, experiment duration, particle concentration and light conditions are all able to influence the findings of investigations. In addition, the applicability of the observed findings for particular TiO2 forms, to TiO2 particulates in general, requires consideration. At this time it is inappropriate to consider the findings for one TiO2 form as being representative for TiO2 particulates as a whole, due to the vast number of available TiO2 particulate forms and large variety of potential tissue and cell targets that may be affected by exposure. Thus emphasising that the physicochemical characteristics are fundamental to their toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.