Increasingly, metal parts made by additive manufacturing are produced using powder bed fusion (PBF). In this paper we report upon the combined effects of PBF parameters, including power and scan speed, in layer-by-layer manufacturing of gas atomized non-modulated (NM) Ni-Mn-Ga alloy. The effects of process parameters upon PBF is studied by applying nine different parameter sets in the as-printed state and after homogenization and ordering. The chemical composition of the samples is analyzed using EDX attached to an SEM, and the crystal structures are determined by X-ray diffraction. The phase transformation temperatures are measured using a low-field ac susceptibility measurement system and the magnetic properties are measured with a vibrating sample magnetometer (VSM). Before the heat-treatment, all as-printed samples showed paramagnetic behavior with low magnetization and no phase transformations could be observed in the susceptibility measurements. After annealing, the samples recovered the ferromagnetic behavior with comparable magnetization to annealed gas atomized powder. The as-printed samples were composed of a mixture of different crystal structures. However, after annealing the original NM structure with a = b = 5.47 Å and c = 6.66 Å with a c/a-ratio of 1.22 was recovered and crystallographic twins could be observed in an SEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.