We recently reported that a sequence variant in the cell-cycle-checkpoint kinase CHEK2 (CHEK2 1100delC) is a low-penetrance breast cancer-susceptibility allele in noncarriers of BRCA1 or BRCA2 mutations. To investigate whether other CHEK2 variants confer susceptibility to breast cancer, we screened the full CHEK2 coding sequence in BRCA1/2-negative breast cancer cases from 89 pedigrees with three or more cases of breast cancer. We identified one novel germline variant, R117G, in two separate families. To evaluate the possible association of R117G and two germline variants reported elsewhere, R145W and I157T with breast cancer, we screened 737 BRCA1/2-negative familial breast cancer cases from 605 families, 459 BRCA1/2-positive cases from 335 families, and 723 controls from the United Kingdom, the Netherlands, and North America. All three variants were rare in all groups, and none occurred at significantly elevated frequency in familial breast cancer cases compared with controls. These results indicate that 1100delC may be the only CHEK2 allele that makes an appreciable contribution to breast cancer susceptibility.
We have isolated genomic clones from several members of the UV and TPA inducible human spr2 gene-family in order to analyse the regulation of these genes at a molecular level. From one of these members, the spr2-1 gene, we have identified and sequenced the regulatory region. By using CAT fusion plasmids and a liposome mediated transfection procedure we show that the isolated promoter region contains all the cis-elements necessary for induced expression after UV irradiation or phorbolester treatment of cultured human keratinocytes. Additionally the spr2-1 promoter is shown to be regulated aswell during the normal process of keratinocyte differentiation. This makes the spr2-1 promoter sequence an ideal tool to study the molecular mechanisms by which environmental agents such as UV radiation and chemical tumor promoters interfere with normal gene expression during cell proliferation and differentiation.
The enzyme tryptophan decarboxylase (TDC; EC 4.1.1.28) converts tryptophan into tryptamine. In Catharanthus roseus and other plants capable of producing terpenoid indole alkaloids (TIAs) TDC links primary metabolism to the secondary metabolic pathway involved in the biosynthesis of these compounds. The accumulation of tdc mRNA in C. roseus cells is developmentally regulated and transcriptionally influenced by elicitors (induction) and auxins (repression). Here we report that TDC is encoded by a single copy gene in the C. roseus genome. No introns were observed upon isolation and sequencing of this gene. To study gene expression controlled by the tdc promoter, a 2 kb promoter fragment and a number of 5' deleted promoter derivatives were joined in translational fusion to a beta-D-glucuronidase reporter gene (gusA). Expression of the chimaeric constructs was monitored in stably transformed tobacco plants and in transiently transfected tobacco protoplasts. Histochemical and fluorimetric analysis of transgenic plants revealed that 1938 bp of the tdc promoter (with respect to the translational start codon) give rise to GUS activity in roots, stems and leaves. No tissue or cell type specificity was noted. Promoter deletions up to nucleotide -398 directed lower levels of gusA expression but conferred the same pattern of staining for GUS activity as the -1938 construct. Further deletion of the tdc promoter up to nucleotide -232 resulted in drastically reduced GUS activity levels and loss of GUS staining in all parts of the transgenic plants. In contrast to stable transformation, the -232 tdc-gusA construct gave rise to GUS activity levels comparable to those of the -398 construct in an assay system for transient expression in protoplasts.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.