Purpose: To test whether image normalization using either a separate 3D proton-density (PD)-weighted prescan, or 2D PD-weighted images prior to the perfusion series, improves correction of differences in spatial sensitivity induced by radiofrequency (RF) surface receiver coils. Originally, this correction was applied using the baseline signal in the myocardium before arrival of the contrast agent. This is of importance, as quantitative analysis of magnetic resonance (MR) myocardial perfusion using deconvolution with the arterial input assumes equal signal sensitivity over the heart. Materials and Methods: First-pass myocardial perfusion measurements were obtained in 13 patients without known coronary artery disease. Absolute perfusion values were assessed for 18 myocardial segments without any normalization and using the three different normalization methods.Results: Using 2D or 3D PD-weighted normalization, similar mean perfusion values were found, but with reduced spatial variance over the 18 segments. The relative dispersion of perfusion at rest was 23% and 35% for the 3D prescan normalization and the baseline normalization, respectively. With 2D and 3D PD-weighted prescan normalization the relative dispersion was closer to the expected physiological heterogeneity.Conclusion: PD-weighted prescan normalization proved to be a valuable addition to quantitative analysis of myocardial perfusion, and better than baseline-based normalization.
Purpose: To investigate the incremental diagnostic value of dual-bolus over single-contrast-bolus first pass magnetic resonance myocardial perfusion imaging (MR-MPI) for detection of significant coronary artery disease (CAD). Materials and Methods:Patients (n ¼ 49) with suspected CAD underwent first pass adenosine stress and rest MR-MPI and invasive coronary angiography (CA). Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) was injected with a prebolus (1 mL) and a large bolus (0.1 mmol/kg). For the single-bolus technique, the arterial input function (AIF) was obtained from the large-contrast bolus. For the dual-bolus technique, the AIF was reconstructed from the prebolus. Absolute myocardial perfusion was calculated by Fermi-model constrained deconvolution. Receiver operating characteristic (ROC) analysis was used to investigate diagnostic accuracy of MR myocardial perfusion imaging for detection of significant CAD on CA at vessel-based analysis. Results:The area under the curve (AUC) of the minimal stress perfusion value for the detection of significant CAD using the single-bolus and dual-bolus technique was 0.85 6 0.04 (95% confidence interval [CI], 0.77-0.93) and 0.77 6 0.05 (95% CI, 0.67-0.86), respectively. Conclusion:In this study the dual-bolus technique had no incremental diagnostic value over single-bolus technique for detection of significant CAD with the used contrast concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.