Tranexamic acid (TSA) is widely used as an antiaging treatment for reducing melasma and wrinkles. There are various mechanisms for wrinkle formation, and one of them is due to damage of the mitochondria. Research on mitochondria in the skin is very limited, so we are interested to see the changes that occur after application of TSA cream. We explored the effect of TSA on mitochondrial protein levels (PGC1α, Tom20, COX IV), which had affected to skin histological structure. Thirty male, 6‐week‐old, Balb/C mice were divided into five groups (negative control, positive control, TSA 3%, TSA 4% and TSA 5%). After 10 days of acclimatization, four groups of mice were exposed to UVB light, of which three groups were given TSA cream for 10 weeks. The skin tissue was excised for protein and histological studies. H&E staining was performed for evaluating histological changes in epidermal thickness and dermal elastosis. TSA treatment on the mice skin increased mitochondrial marker levels and epidermal thickness while decreasing dermal elastosis for all the treatment groups. Topical application of TSA significantly increased mitochondrial biogenesis which may cause alteration in epidermal thickness and reduced dermal elastosis in the histology of mice skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.