Early MRD kinetics is an important tool for new prognostication models with direct clinical impact irrespective of standard prognostic factors in patients with BCR-ABL negative ALL.
BackgroundWhile achieving prolonged remissions in other B cell-derived malignancies, chimeric antigen receptor (CAR) T cells still underperform when injected into patients with chronic lymphocytic leukemia (CLL). We studied the influence of genetics on CLL response to anti-CD19 CAR T-cell therapy.MethodsFirst, we studied 32 primary CLL samples composed of 26 immunoglobulin heavy-chain gene variable (IGHV)-unmutated (9ATM-mutated, 8TP53-mutated, and 9 without mutations inATM,TP53,NOTCH1orSF3B1) and 6IGHV-mutated samples without mutations in the above-mentioned genes. Then, we mimicked the leukemic microenvironment in the primary cells by ‘2S stimulation’ through interleukin-2 and nuclear factor kappa B. Finally, CRISPR/Cas9-generatedATM-knockout andTP53-knockout clones (four and seven, respectively) from CLL-derived cell lines MEC1 and HG3 were used. All these samples were exposed to CAR T cells. In vivo survival study in NSG mice using HG3 wild-type (WT),ATM-knockout orTP53-knockout cells was also performed.ResultsPrimary unstimulated CLL cells were specifically eliminated after >24 hours of coculture with CAR T cells. ‘2S’ stimulated cells showed increased survival when exposed to CAR T cells compared with unstimulated ones, confirming the positive effect of this stimulation on CLL cells’ in vitro fitness. After 96 hours of coculture, there was no difference in survival among the genetic classes. Finally, CAR T cells were specifically activated in vitro in the presence of target knockout cell lines as shown by the production of interferon-γ when compared with control (CTRL) T cells (p=0.0020), but there was no difference in knockout cells’ survival. In vivo, CAR T cells prolonged the survival of mice injected with WT,TP53-knockout andATM-knockout HG3 tumor cells as compared with CTRL T cells (p=0.0485, 0.0204 and <0.0001, respectively). When compared withATM-knockout,TP53-knockout disease was associated with an earlier time of onset (p<0.0001), higher tumor burden (p=0.0002) and inefficient T-cell engraftment (p=0.0012).ConclusionsWhile in vitro no differences in survival of CLL cells of various genetic backgrounds were observed, CAR T cells showed a different effectiveness at eradicating tumor cells in vivo depending on the driver mutation. Early disease onset, high-tumor burden and inefficient T-cell engraftment, associated withTP53-knockout tumors in our experimental setting, ultimately led to inferior performance of CAR T cells.
IntroductionCOVID-19 has been associated with high morbidity and mortality in allogeneic hematopoietic stem cell transplant (allo-HCT) recipients.MethodsThis study reports on 986 patients reported to the EBMT registry during the first 29 months of the pandemic.ResultsThe median age was 50.3 years (min – max; 1.0 – 80.7). The median time from most recent HCT to diagnosis of COVID-19 was 20 months (min – max; 0.0 – 383.9). The median time was 19.3 (0.0 - 287.6) months during 2020, 21.2 (0.1 - 324.5) months during 2021, and 19.7 (0.1 – 383.9) months during 2022 (p = NS). 145/986 (14.7%) patients died; 124 (12.6%) due to COVID-19 and 21 of other causes. Only 2/204 (1%) fully vaccinated patients died from COVID-19. There was a successive improvement in overall survival over time. In multivariate analysis, increasing age (p<.0001), worse performance status (p<.0001), contracting COVID-19 within the first 30 days (p<.0001) or 30 – 100 days after HCT (p=.003), ongoing immunosuppression (p=.004), pre-existing lung disease (p=.003), and recipient CMV seropositivity (p=.004) had negative impact on overall survival while patients contracting COVID-19 in 2020 (p<.0001) or 2021 (p=.027) had worse overall survival than patients with COVID-19 diagnosed in 2022.DiscussionAlthough the outcome of COVID-19 has improved, patients having risk factors were still at risk for severe COVID-19 including death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.