A new approach was applied with the aim at producing plant protein hydrolysates less heterogeneous and less contaminated with nonpeptide substances than are the presently available digests. A significant reduction of nonprotein contaminants was achieved by extraction of the plant material, soy flour or wheat flour, with acetone prior to isolation of the protein. Enzymes of nonanimal origin, papain or Pronase, were used for protein hydrolysis. The components of the hydrolysates were resolved by low-pressure liquid chromatography. Separation of peptide fractions and of remaining nonpeptide contaminants was achieved using small-pore size-exclusion chromatography matrices, Sephadex G-15 or Biogel P-2. Individual peptide fractions, both from soy protein and from wheat gluten, varied substantially in their growth-promoting and production-enhancing activities when tested on a mouse hybridoma culture in protein-free medium. The highest enhancement of viable cell density in batch cultures was 180% of control, and the highest enhancement of final immunoglobulin concentration was more than 230% of control. The existence of marked differences in activity of individual peptide fractions leads to a suggestion that the hydrolysates may provide peptides exerting specific positive effects on cultured animal cells.
Counting the types of squares rather than their occurrences, we consider the problem of bounding the number of distinct squares in a string. Fraenkel and Simpson showed in 1998 that a string of length n contains at most 2n distinct squares. Ilie presented in 2007 an asymptotic upper bound of 2n−Θ(log n). We show that a string of length n contains at most 11n/6 distinct squares. This new upper bound is obtained by investigating the combinatorial structure of double squares and showing that a string of length n contains at most 5n/6 particular double squares. In addition, the established structural properties provide a novel proof of Fraenkel and Simpson's result.
Synthetic oligopeptides, tri- to pentaglycine and tri- and tetraalanine, were found to enhance viable cell density and culture viability when applied at concentrations higher than milllimolar to the cultures of a model hybridoma line. Oligoalanines, in addition, enhanced monoclonal antibody yields. Oligoglycines promoted solely the cell growth, unless the batch culture was fed with a medium concentrate. Examination of the effects of various tripeptides composed of glycine, alanine, serine, threonine, lysine, and histidine showed that some of the peptides promoted the growth of the culture, while other peptides suppressed the growth and enhanced the monoclonal antibody yield. Determination of the levels of amino acids and peptides in culture media indicated that the observed changes of culture parameters were caused by intact peptide molecules, rather than by amino acids liberated from the peptides by enzymic cleavage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.