The results provide evidence for adaptive differences among ploidy levels, which may contribute to their complex distribution pattern. The prevalence of asexual reproduction, limited dispersal and equilibrium-disrupting processes may support local coexistence of cytotypes.
There is an ever–increasing amount of cytogenetic data in plant sciences obtained by cytometric techniques, particularly flow cytometry. However, as these methods determine nuclear DNA amount irrespective of the number of chromosomes, a discrepancy between cytometric and karyological data may occur. To avoid potential bias, we appeal for consistency, distinguishing between the terms "ploidy / aneuploidy" referring to chromosome numbers and "DNA ploidy / DNA aneuploidy" to nuclear DNA content.
Abstract. In a species‐rich mountain grassland in the Krkonosse Mts., Czechoslovakia, data from four permanent plots of 50 cm x 50 cm were recorded annually from 1985 to 1990 to study the spatial dynamics of the species. Plots were divided into 15 x 15 subplots and the number of vegetative units of all plants within each subplot was determined. There was not much net change at the plot level, but the subplots were very dynamic. Two aspects of the spatial dynamics of the species were followed: (1) persistence, i.e. the tendency of the species to remain in the same subplot, and (2) long‐distance spreading, i.e. movement to subplots beyond the immediate neighbourhood. Species differed widely in their persistence and longdistance spreading and were classified into mobility types: long‐range guerrilla, short‐range guerrilla, phalanx and 'sitting’. The mobility types were, to a certain extent, correlated with the growth form of plants, but some species of one growth form showed different types of small‐scale dynamics and some species with different growth forms had the same spatial dynamics.
Sheep grazing was investigated as an alternative to traditional management of meadows in the Krkonoše Mts. Until the second World War these meadows were mown in mid-summer and grazed by cattle for the rest of the season. Subsequent abandonment of the meadows has resulted in decreasing species richness. Degradation phases of the former communities have been replacing the original species-rich vegetation. Significant changes were apparent six years after the introduction of sheep grazing. In grazed plots the proportion of dominant herbs (Polygonum bistorta and Hypericum maculatum) decreased and grasses (Deschampsia cespitosa, Festuca rubra, Agrostis capillaris, Anthoxanthum alpinum) increased. The increase in grasses was positively correlated with an increase in several herbs. The proportion of some herbs increased despite being selectively grazed (Adenostyles alliariae, Melandrium rubrum, Veratrum lobelianum). Any losses caused by grazing of mature plants were probably compensated by successful seedling establishment. Cessation of grazing resulted in significant changes in vegetation within three years. The cover of nitrophilous tall herbs and grasses (e.g. Rumex alpestris, Holcus mollis, Deschampsia cespitosa, Geranium sylvaticum) increased in the abandoned plots. In the plots grazed for nine years cover of species-rich mountain meadow species increased (e.g. fine-leaved grasses, Campanula bohemica, Potentilla aurea, Viola lutea, Silene vulgaris).The main conservation risk is the expansion of a competitive species with low palatability, Deschampsia cespitosa. This species can be suppressed by a combination of grazing and mowing. In order for grazing to be effective, the number of sheep should be proportional to meadow production. This may be difficult to maintain as production is variable and is impossible to predict at the beginning of a growing season. A large part of the biomass may thus remain intact in some years. Negative effects of grazing may be, at least partly, eliminated by a combination of cutting and grazing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.