Abstract-A set of novel silicate glasses containing ZnO and co-doped with Er 3+ and Yb 3+ was designed as substrates for optical waveguide amplifiers. Characterized by exceptionally low up-conversion, minimum Er concentration quenching and high mechanical as well as chemical stability, the reported glasses can compete with phosphate-based materials typically used in the state-of-art active devices. Straight channel waveguides with propagation losses as low as 0.18 dB/cm were fabricated in these substrates using Ag + Na + and K + Na + thermal ion exchange. Net on-chip gain values of 6.7 dB at 1537 nm were measured and a net fiber to-fiber gain of 5 dB was achieved when pumped at 976 nm. A six-level spatially resolved numerical model of an Er-Yb co-doped active waveguide was developed to analyze and optimize the amplifier performance. Modification of the rare-earth dopant concentration and the channel waveguide geometry was proposed to increase the gain figure and improve the overall amplifier efficiency.Index Terms-Channel waveguides, Er-Yb-doped glass, ion exchange, optical waveguide amplifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.