Ustilago maydis, a fungal pathogen of maize, alternates between budding and filamentous growth in response to mating and other environmental signals. Defects in components of the cAMP signaling pathway affect this morphological transition and reveal an association of budding growth with elevated cAMP levels and filamentous growth with low cAMP levels. We have identified two genes, adr1 and uka1, encoding catalytic subunits of cAMP-dependent protein kinase (PKA). Disruption of adr1 resulted in a constitutively filamentous growth phenotype similar to that of mutants deficient in adenylyl cyclase. Importantly, adr1 is required for pathogenicity and is responsible for the majority of PKA activity in fungal cells. In contrast, uka1 has little inf luence on pathogenicity, and deletion of the uka1 gene does not affect cell morphology. These results provide compelling evidence that regulated PKA activity is crucial during infectious development of U. maydis.Pathogenesis, dimorphic growth, and sexual development are intricately interconnected in the corn smut fungus Ustilago maydis, and the perception of signals from the host plant is likely to play an important role in these processes (1, 2). Mating of haploid U. maydis cells, which are nonpathogenic and yeast-like, leads to the formation of infectious, dikaryotic hyphae. Dikaryons can be established in culture, but the resulting hyphae need the host environment to sustain mycelial proliferation. Infection of maize plants results in tumor induction and the eventual formation of masses of diploid teliospores.
We show that upon induction of Agrobacterium tumefaciens, free linear double-stranded T-DNA molecules as well as the previously described T-strands are generated from the Ti plasmid. A majority of these molecules are bound to a protein. We show that this protein is the product of the virulence gene virD2. This protein was found to be attached to the 5' terminus of processed T-DNA at the right border and to the rest of the Ti plasmid at the left border. The protein remnant after Pronase digestion rendered the right end of the double-stranded T-DNA resistant to 5' -> 3' exonucleolytic attack in vitro. The protein-DNA association was resistant to SDS, mercaptoethanol, mild alkali, piperidine, and hydroxylamine, indicating that it involves a covalent linkage. The possible involvement of this T-DNA-protein complex in replication, transduction to the plant, nuclear targeting, and integration into the plant nuclear DNA is discussed.
The neuropeptides orexin A and B (also known as hypocretins) play an important role in many physiological and behavioral activities. Orexins are ligands of two closely related G-protein-coupled receptors, that are the named orexin 1 and orexin 2 receptors. To clearly identify the minimal ligand sequences required for receptor activation, we synthesized and analyzed different centrally, C- and N-terminally truncated analogues of orexins A and B. Furthermore, we used the shortest active analogue to screen for important amino acid residues by l-alanine and l-proline replacement scans. For orexin A, only full-length peptides were able to show the same activity as orexin A, but interestingly, reduced orexin A and natural orexin A, which contains the two disulfide bonds, had the same activity. The shortest highly active orexin B analogue was orexin B 6-28. In addition, we identified orexin A 2-33 as the first analogue with orexin 1 receptor preference and orexin B 10-28, [A27]orexin B 6-28, and [P11]orexin B 6-28 as being highly potent orexin 2 receptor selective (>1000-fold) peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.