In a series of experiments on female miniature pigs, the pattern of plasma LH and progesterone levels during the oestrous cycle, late pregnancy and lactation and after ovariectomy were characterized, and the effect of pentobarbitone treatment was tested. The preovulatory surge of LH occurred in seven out of eight animals between 00.00 and 12.0 h on day 0 of the oestrous cycle (day 1 of standing heat). Plasma progesterone strated to decline 8 days before oestrus and reached its lowest value 5 days before the preovulatory LH peak. Increases in progesteron concentration were already noticeable 48 h after the LH surge. During late pregnancy, parturition and lactation, plasma LH was low and showed only minor fluctuations, while plasma progesterone declined 4 to 5 days before parturition. Both hormones remained at low levels throughout lactation. Three weeks before parturition increases in LH were always followed by an increase in progesterone. This dependency was greatly diminished immediately before delivery. Four to 12 days after weaning the animals came into oestrus which was followed by an increase in LH and later an increase in progesterone concentrations. Ovariectomy during dioestrus resulted in a steady increase in plasma LH levels of 35-39 days. Ovariectomy caused abortion if performed on day 100 of pregnancy. It was followed by a rapid increase of plasma LH concentration. Normal parturition (around day 115) and lactation took place when animals were spayed on day 112 of pregnancy. In this case, plasma LH levels remained even lower than before ovariectomy as long as lactation was maintained. Immediately after weaning a rapid increase in the normal postovariectomy pattern of LH secretion was observed. Pentobarbitone anaesthesia (30-35 mg/kg body wt, initial dose), during pro-oestrusoestrus, for less than 5 h had no effect on the preovulatory LH increase. However, pentobarbitone anaesthesia for more than 6 h inhibitied the LH peak and ovulation if the animal was under deep anaesthesia before 24.00 h on the day before oestrus. Pentobarbitone treatment of ovariectomized pigs resulted in a clear decrease in LH levels 40 min after a single i.v. dose.
SUMMARY1. The milk ejection reflex in response to suckling was studied in conscious sows by continuous recording of intramammary pressure, radioimmunoassay of plasma concentrations of neurohypophysial hormones, and observation of the behaviour of the sows and piglets.2. A regular pattern of nursing, suckling and milk ejection was observed. The mean duration of the suckling period was 6-3 min. Over 144 suckling periods, 113 milk ejections were recorded. Each milk ejection was characterized by a sudden rise in intramammary pressure reaching 20-49 mmHg, and lasting 8-41 sec. Milk ejections occurred only once per suckling period, at a mean interval of 44-3 min.3. Each milk ejection occurred with a mean latency of 2-4 min from the onset of a period of initial massage of the udders by the piglets, and was coincident with a period of quiet suckling when the piglets were consuming milk. The onset of nursing was signalled by the sows grunting in a rhythmic manner. In most cases, the frequency of grunts, at first low, increased suddenly 23 see before milk ejection. 4. During eighteen suckling periods leading to milk ejection, neurohypophysial hormone assays performed on serial blood samples showed an increase in plasma concentration of oxytocin up to 30 see before milk ejection. The concentration of lysine-vasopressin did not rise above basal levels.5. In 21-4% of the suckling periods, no rise in intramammary pressure was observed. In these 'incomplete sucklings', the sow usually failed to grunt rapidly, and the piglets obtained no milk. For three of these periods, hormone assay showed no increase in oxytocin or vasopressin concentrations in blood.6. Oxytocin given intravenously produced variations in intramammary pressure which depended on the dose and the rate of injection. Rapid injections of 25-50 m-u. oxytocin, caused milk ejections similar to those induced by suckling. When oxytocin was administered at different rates, the faster the injection, the shorter the latency and the higher the amplitude of the response. Plasma concentrations of oxytocin after injection of 25 m-u. were similar to those observed during reflex milk ejection.7. Trains of electrical pulses were applied to the posterior pituitary of four anaesthetized sows. At frequencies ofstimulation above 10 Hz, a rise in intramammary The experiments were carried out at the Instutit fur Tierzucht und Tierverhalten, Mariensee. 19 PHY 333 F. ELLENDORFF, M. L. FORSLING AND D. A. POULAIN pressure and an increase in plasma oxytocin and vasopressin concentrations were observed. At frequencies of stimulation of 30-50 Hz, the response of the mammary gland and the time course of the variations in oxytocin plasma concentrations were similar to those observed during natural reflex milk ejection.8. It is concluded that reflex milk ejections during suckling in the pig are caused by the intermittent and spurt-like release of about 25 m-u. oxytocin, without concomitant vasopressin release. It is postulated that the release of oxytocin is probably precipitated by a brie...
Reliable physiological markers for performance evaluation in sport horses are missing. To determine the diagnostic value of plasma ACTH and cortisol measurements in the warmblood horse, 10 initially 3-yr-old geldings of the Hannovarian breed were either exposed to a training schedule or served as controls. During experimental Phase 1, horses were group-housed, and half of the horses were trained for 20 wk on a high-speed treadmill. During Phase 2, groups were switched and one group was trained for 10 wk as during Phase 1, whereas the control group was confined to boxes. During Phase 3 horses were initially schooled for riding. Thereafter, all horses were regularly schooled for dressage and jumping, and half of the horses received an additional endurance training for 24 wk. During all phases horses were exposed at regular intervals to various standardized treadmill exercise tests. During and after the tests frequent blood samples were taken from an indwelling jugular catheter for determination of ACTH and cortisol. Treadmill exercise increased both hormones. Maximum ACTH concentrations were recorded at the end of exercise, and maximum cortisol levels were recorded 20 to 30 min later. Except for one test there were no differences in ACTH levels between trained horses and controls. There was no significant effect of training on the cortisol response (net increase) to treadmill exercise in any of the tests during Phase 1. During Phase 2 higher cortisol responses were recorded in controls than in trained horses (P < .05) after 10 wk of training (controls confined to boxes). During Phase 3 plasma cortisol responses were also higher in controls than in trained horses (P < .05 after 6, 18, and 24, P < or = .07 after 12 wk of training) when the inclination of the treadmill was 5%, but not at 3%. There was no overlap in net cortisol responses at 30 min between trained and untrained horses. An ACTH application after 24 wk of training resulted in higher cortisol responses in controls than in trained horses (P < or = .05), without any overlap between the groups at 30 min after ACTH. Plasma cortisol responses to either treadmill exercise or ACTH injection may be a reliable physiological marker for performance evaluation. Prerequisites are sufficient differences in training status and sufficient intensity of exercise test conditions.
Growing interest among several horse-breeder associations has initiated the development of a screening procedure to test for anabolic agents in hair, which has the advantage over blood and urine specimens of allowing long-term detection. An analytical method was established to monitor in tails or manes several anabolic substances available as veterinary medicines or as so-called nutritional supplements (clenbuterol, different esters or prohormones of nandrolone and testosterone). The analytical procedure to detect steroids in hair samples consists of the following steps: decontamination of the hair strand or segment with methanol/water (1:1), milling, extraction of the hair material in an ultrasonic bath using methanol, purification by liquid-liquid extraction (n-pentane/methanol, 25:1) and HPLC cleanup, derivatisation of the relevant LC fractions with MSTFA, and measurement using GC-MS/MS technique. The first objective of our study was the detection of exogenous nandrolone (nortestosterone, NT) in the horse hair; therefore nandrolone-associated compounds [nandrolone dodecanoate administered intramuscularly (i.m.) and a mixture of 4-estrenediol and 4-estrenedione, transdermal] were administered to four geldings. The highest concentrations of NT following i.m. treatment were measured after 10 days in a 2-cm hair segment (up to 18 pg/mg); NT was detectable for up to 120 days and in some cases up to 330 days in tail hair (limit of detection 0.3 pg/mg). Following transdermal application, nandrolone as well as the administered prohormones were identified in tail and mane until the latest sampling at 3 months. Furthermore, untreated stallions (128) were investigated to estimate the range of endogenous levels of NT and testosterone (T) in hair. Maximum values of 3 pg/mg (NT) and 1 pg/mg (T) were quantified originating from endogenous formation in the male horse. Additionally, a possible relationship between steroid concentrations in hair specimens and the age of stallions was appraised. NT and T were not detected in hair samples of control geldings. Following nandrolone treatment of geldings, highest values in hair exceeded the endogenous amount detected in untreated stallions. Therefore comparison of concentrations measured in control samples with the estimated endogenous levels could give a clue to exogenous application in cases of abnormally high amounts of NT or T. The possibility of the evaluation of threshold values is discussed as a means to verify an exogenous administration of NT and T in hair samples. Furthermore, the detection of a synthetic substance in hair, e. g. the parent steroid ester by itself, would be unequivocal proof of an exogenous origin of NT or T and the previous medication of the stallion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.