Proteomes are characterized by large protein-abundance differences, cell-type- and time-dependent expression patterns and post-translational modifications, all of which carry biological information that is not accessible by genomics or transcriptomics. Here we present a mass-spectrometry-based draft of the human proteome and a public, high-performance, in-memory database for real-time analysis of terabytes of big data, called ProteomicsDB. The information assembled from human tissues, cell lines and body fluids enabled estimation of the size of the protein-coding genome, and identified organ-specific proteins and a large number of translated lincRNAs (long intergenic non-coding RNAs). Analysis of messenger RNA and protein-expression profiles of human tissues revealed conserved control of protein abundance, and integration of drug-sensitivity data enabled the identification of proteins predicting resistance or sensitivity. The proteome profiles also hold considerable promise for analysing the composition and stoichiometry of protein complexes. ProteomicsDB thus enables navigation of proteomes, provides biological insight and fosters the development of proteomic technology.
Abstract-Managing hierarchies is an ever-recurring challenge for relational database systems. Through investigations of customer scenarios at SAP we found that today's RDBMSs still leave a lot to be desired in order to meet the requirements of typical applications. Our research puts a new twist on handling hierarchies in SQL-based systems. We present an approach for modeling hierarchical data natively, and we extend the SQL language with expressive constructs for creating, manipulating, and querying a hierarchy. The constructs can be evaluated efficiently by leveraging existing indexing and query processing techniques. We demonstrate the feasibility of our concepts with initial measurements on a HANA-based prototype.
Maintaining and querying hierarchical data in a relational database system is an important task in many business applications. This task is especially challenging when considering dynamic use cases with a high rate of complex, possibly skewed structural updates. Labeling schemes are widely considered the indexing technique of choice for hierarchical data, and many different schemes have been proposed. However, they cannot handle dynamic use cases well due to various problems which we investigate in this paper. We therefore propose our dynamic Order Indexes, which offer competitive query performance, unprecedented update efficiency, and robustness for highly dynamic workloads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.