Linear friction welding is a solid-state process that comprises rapid heating and cooling of the welded parts. Residual stresses (RS) as in every other welding process cannot be avoided. The presence of RS compromises the in-service performance and reliability. They influence stress corrosion cracking, fatigue strength, and the crack growth rate. Knowing the magnitude and nature of such stresses is critical for improving the quality of welded joints. Therefore, four different manufacturing stages of linear friction welded chain links were analyzed in the present study: "as forged" (F), "as welded" (A), "as welded" without flash (N), and post weld heat treated (P). The residual stress field was measured using the hole drilling (HD) method. The results of the hole drilling method showed to be independent of the measured position and symmetry with respect to the weld was observed in all evaluated regions. Close to the weld center line (WCL), the compressive stresses present in the "as forged" condition switched to tensile as a result of the welding process. However, in further regions, stresses remained almost unchanged for either A and N. The PWHT uniformizes the residual stress field along the whole weld region.
Linear friction welding (LFW) is a solid-state welding process that has been thoroughly investigated for chain welding in recent years in order to replace the currently in use Flash Butt Welding (FBW) process. Modelling has proven to be an indispensable tool in LFW, thus providing necessary insight to the process, regardless of its final application. This article describes a 3D model developed in the commercial software DEFORM to study the LFW process of 30CrNiMo8 high strength steel in the Hero chain. Hence, a weakly coupled thermal and mechanical model were used, by means of the process experimental input such as displacement histories. The flash morphology and intervening mechanisms were analyzed. A thermal evaluation of different regions in the studied geometry was considered, and a correlation of the modeled and experimental width of the extrusion zone was established.
The linear friction welding process is a solid-state welding technology enabling high-quality joints in chains, thus competing with the currently in use flash butt welding process. In the present study, the effects of welding parameters were investigated, using 30CrNiMo8 small crosssection with 10 mm in diameter. To that end, a 2 k full factorial design was used. The influence of the process inputs was assessed experimentally and numerically using the commercial software DEFORM. A fairly good agreement was obtained between experiments and modelling. Some differences in the statistical effect of the parameters were observed regarding burn-off rate. Confirmation experiments were carried out to evaluate the adequacy of the attained regression models and good predictive ability was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.