Abstract-We provide a frame-theoretic analysis of oversampled finite impulse response (FIR) and infinite impulse response (IIR) uniform filter banks (FB's). Our analysis is based on a new relationship between the FB's polyphase matrices and the frame operator corresponding to an FB. For a given oversampled analysis FB, we present a parameterization of all synthesis FB's providing perfect reconstruction. We find necessary and sufficient conditions for an oversampled FB to provide a frame expansion. A new frame-theoretic procedure for the design of paraunitary FB's from given nonparaunitary FB's is formulated. We show that the frame bounds of an FB can be obtained by an eigenanalysis of the polyphase matrices. The relevance of the frame bounds as a characterization of important numerical properties of an FB is assessed by means of a stochastic sensitivity analysis. We consider special cases in which the calculation of the frame bounds and synthesis filters is simplified. Finally, simulation results are presented.
Abstract-We propose a method for tracking an unknown number of targets based on measurements provided by multiple sensors. Our method achieves low computational complexity and excellent scalability by running belief propagation on a suitably devised factor graph. A redundant formulation of data association uncertainty and the use of "augmented target states" including binary target indicators make it possible to exploit statistical independencies for a drastic reduction of complexity. An increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. As a consequence, the complexity of our method scales only quadratically in the number of targets, linearly in the number of sensors, and linearly in the number of measurements per sensors. The performance of the method compares well with that of previously proposed methods, including methods with a less favorable scaling behavior. In particular, our method can outperform multisensor versions of the probability hypothesis density (PHD) filter, the cardinalized PHD filter, and the multi-Bernoulli filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.