Glucocorticoids have pleiotropic effects that are used to treat diverse diseases such as asthma, rheumatoid arthritis, systemic lupus erythematosus and acute kidney transplant rejection. The most commonly used systemic glucocorticoids are hydrocortisone, prednisolone, methylprednisolone and dexamethasone. These glucocorticoids have good oral bioavailability and are eliminated mainly by hepatic metabolism and renal excretion of the metabolites. Plasma concentrations follow a biexponential pattern. Two-compartment models are used after intravenous administration, but one-compartment models are sufficient after oral administration.The effects of glucocorticoids are mediated by genomic and possibly nongenomic mechanisms. Genomic mechanisms include activation of the cytosolic glucocorticoid receptor that leads to activation or repression of protein synthesis, including cytokines, chemokines, inflammatory enzymes and adhesion molecules. Thus, inflammation and immune response mechanisms may be modified. Nongenomic mechanisms might play an additional role in glucocorticoid pulse therapy. Clinical efficacy depends on glucocorticoid pharmacokinetics and pharmacodynamics. Pharmacokinetic parameters such as the elimination half-life, and pharmacodynamic parameters such as the concentration producing the half-maximal effect, determine the duration and intensity of glucocorticoid effects. The special contribution of either of these can be distinguished with pharmacokinetic/pharmacodynamic analysis. We performed simulations with a pharmacokinetic/pharmacodynamic model using T helper cell counts and endogenous cortisol as biomarkers for the effects of methylprednisolone. These simulations suggest that the clinical efficacy of low-dose glucocorticoid regimens might be increased with twice-daily glucocorticoid administration.
Lipopolysaccharide-binding protein might serve as a novel marker for CAD in men. The present results underlie the potential importance of innate immune mechanisms for CAD. Further studies are warranted to bolster the data and to identify pathogenetic links between innate immune system activation and atherosclerosis.
Background:In contrast to insulin-dependent type 1 diabetes mellitus (T1DM), the indication for Simultaneous pancreas-kidney transplantation (SPK) in patients with type 2 diabetes mellitus (T2DM) is still ambiguous and wisely Eurotransplant (ET) only granted transplant-permission in a selected group of patients. However, with regard to improvement of metabolic conditions SPK might still be a considerable treatment option for lean insulin dependent type 2 diabetics suffering from renal disease.Methods: Medical data (2001-2013) from all consecutive T1DM and T2DM patients who received a SPK or kidney transplant alone (KTA) at the University Hospital of Leipzig were analyzed. Donor, recipients and long-term endocrine, metabolic and graft outcomes were investigated for T1DM and T2DM-SPK recipients (transplanted upon a special request allocation by ET) and T2DM patients who received a KTA during the same period.Results: Eighty nine T1DM and 12 T2DM patients received a SPK and 26 T2DM patients received a KTA. Patient survival at 1 and 5 years was 89.9 and 88.8% for the T1DM group, 91.7 and 83.3% for the T2DM group, and 92.3 and 69.2% for the T2DM KTA group, respectively (p < 0.01). Actuarial pancreas graft survival for SPK recipients at 1 and 5 years was 83.1 and 78.7% for the T1DM group and 91.7 and 83.3% for the T2DM group, respectively (p = 0.71). Kidney allograft survival at 5 years was 79.8% for T1DM, 83.3% for T2DM, and 65.4% for T2DM KTA (p < 0.01). Delayed graft function (DGF) rate was significantly higher in type 2 diabetics received a KTA. Surgical, immunological and infectious complications showed similar results for T1DM and T2DM recipients after SPK transplant and KTA, respectively. With regard to the lipid profile, the mean high-density lipoprotein (HDL)cholesterol levels were significantly higher in T1DM recipients compared to T2DM patients before transplantation (p = 0.02) and remained significantly during follow up period.(Continued on next page)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.