Background
Rates of musculoskeletal injury differ substantially between the genders, with females more likely to experience conditions such as anterior cruciate ligament (ACL) injuries than males in the same sports. Emerging evidence suggests a significant hormonal contribution. Most research has focused solely on how hormonal fluctuations affect connective tissue, but a direct link between hormonal shifts, ligamentous laxity, and ACL injury has not been borne out. There is also evidence to suggest that sex hormones can modulate the central nervous system, but how this affects neuromuscular control is not well understood.
Objective
To determine whether changes in sex hormone concentrations would alter spinal excitability, measured across the menstrual and oral contraceptive pill cycle. We hypothesized that spinal excitability would fluctuate across the menstrual cycle (with increased excitability during the periovulatory phase due to peak estradiol concentration), but that there would be no fluctuation in oral contraceptive users.
Design
This was a prospective cohort study.
Setting
The study took place at a biomechanics laboratory at a rehabilitation hospital.
Participants
A total of 30 healthy women aged 18–35 who were similar in age, body composition, and exercise-training status were included. Fifteen of the women were eumenorrheic and nonusers of oral contraceptives (nonusers), and 15 of the women were taking oral contraceptives (users).
Main Outcome Measures
H-reflex (Hmax/Mmax ratio), serum estradiol, and progesterone concentrations were measured at 3 time points during the menstrual and contraceptive pill cycle.
Results
The H-reflex (Hmax/Mmax ratio) remained stable across the menstrual and contraceptive pill cycle. Spinal excitability was lower in the users compared with the nonusers across all testing sessions, but this was not statistically significant.
Conclusions
Our results suggest that acute fluctuations of endogenous estradiol and progesterone do not modulate spinal excitability. However, long-term exposure to exogenous estrogen and progesterone (oral contraceptives) might have an impact on spinal excitability and neuromuscular control. Further research is necessary to better understand the potential differential effect of endogenous and exogenous sex hormones on spinal excitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.