Subjective video quality assessment (VQA) strongly depends on semantics, context, and the types of visual distortions. Currently, all existing VQA databases include only a small number of video sequences with artificial distortions. The development and evaluation of objective quality assessment methods would benefit from having larger datasets of real-world video sequences with corresponding subjective mean opinion scores (MOS), in particular for deep learning purposes. In addition, the training and validation of any VQA method intended to be 'general purpose' requires a large dataset of video sequences that are representative of the whole spectrum of available video content and all types of distortions. We report our work on KoNViD-1k, a subjectively annotated VQA database consisting of 1,200 publicdomain video sequences, fairly sampled from a large public video dataset, YFCC100m. We present the challenges and choices we have made in creating such a database aimed at 'in the wild' authentic distortions, depicting a wide variety of content.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
The paper investigates the determinants of banking profitability and banking market conditions in Austria. We conduct a panel econometric analysis which allows for testing the hypotheses which have become the most prominent in the literature on bank profitability: the structure-conduct-performance hypothesis, the efficient-structure hypothesis and the relative market-power hypothesis. Further, we test whether Austrian banking markets are, on average, contestable. A newly compiled dataset covering more than 700 Austrian banks ranging over the period from 1995 to 2002 is used to carry out these econometric analyses. The empirical findings support the view that the Austrian banks do exert, on average, some local market power. However, the gains in terms of excess profits are rather minor as a result of low deterrence powers of the incumbent banks.banking performance, banking profitability, banking market structure, panel econometrics,
In this paper we investigate the performance of the Austrian banks which have participated in a domestic in-market merger operation since 1996. For this purpose we apply the Data Envelopment Analysis (DEA) methodology in combination with a Tobit model to account for the variation of the productive efficiency scores due to external determinants such as in-market merger operations. In order to cope with the problem of selectivity we estimate the model subject to the presence (or absence) of a treatment effect as encompassed by the participation in in-market merger activities. The dataset used comprises an unbalanced panel of data of about 800 Austrian banks ranging over 1996 to 2002. The paper finds evidence supporting the view that banks which participated in domestic in-market merger operations attain a higher productive efficiency level than banks which did not participate in such operations. The analysis also indicates that the merger gains remain significant over a longer period of time (more than five years) but show a slight tendency to level off.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.