tert
‐Butyl‐substituted diphospha[2]ferrocenophane has been used as a stereochemically confined diphosphane to explore the addition of O, S, Se and Te. Although the diphosphanylchalcogane has been obtained for tellurium, all other chalcogens give diphosphane monochalcogenides. The latter transform via chalcogen‐transfer rearrangement to the corresponding diphosphanylchalcoganes upon heating. The kinetics of this rearrangement has been followed with NMR spectroscopy supported by DFT calculations. Intermediates during rearrangement point to a disproportionation/synproportionation mechanism for the S and Se derivatives. Cyclic voltammetry together with DFT studies indicate ferrocene‐centred oxidation for most of the compounds presented.
A transient phosphenium cation embedded into a [3]ferrocenophane scaffold was formed via chloride abstraction. The cation has been trapped with phosphane, carbene, and silylene donors resulting in stable adducts or bond activation of the ferrocenophane bridge. In the absence of donors, dimerization of the phosphenium cation to the corresponding dication is observed or P−C bond activation with migration of a substituent leading to a putative phosphoniodiphosphene. Using 1,3-di-tert-butylimidazol-2-silylene as the donor, further reaction of the initially formed chlorosilane leads to activation of a P−P bond of the ferrocenophane scaffold with ring expansion of the ansa-bridge. The donor formation and bonding situation are investigated by density functional theory calculations as well as experimental methods (e.g., NMR spectroscopy and X-ray crystallography).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.