Serotonin antagonists show impressive analgesic efficacy in rheumatoid arthritis, osteoarthritis (OA) or fibromyalgia; however, this effect is not well understood. We examined the mechanism of serotonin-induced inflammation and its antagonists in OA. Serotonin receptor subtypes and COX-2 were analysed by RT-PCR from synovial tissue. Serum-free cultures were stimulated with 10 muM serotonin and/or the antagonists ketanserin (5-HT(2A)), tropisetron (5-HT(3)) and parecoxib (COX-2). Prostaglandin E(2) (PGE(2)), tumour necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta) and leukotriene B4 (LTB4) were measured by an immunoassay in the supernatants. RT-PCR results showed mRNA for 5-HT(2A) and 5-HT(3) receptors, and COX-2. PGE(2) in the supernatants increased by 261.2% +/- 56.7 (mean +/- SEM; P = 0.007) in response to serotonin. TNF-alpha, IL-1beta and LTB4 levels did not change. Ketanserin, tropisetron and parecoxib suppressed PGE(2). The serotonin-induced PGE(2) overexpression appeared thus to be mediated by 5-HT(2A) and 5-HT(3) receptors. This activation might involve COX-2. The findings may explain the potent benefit of 5-HT(3) antagonists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.