Reactivation of latent cytomegalovirus (CMV) in recipients of hematopoietic cell transplantation (HCT) not only results in severe organ manifestations, but can also cause "graft failure" resulting in bone marrow (BM) aplasia. This inhibition of hematopoietic stem and progenitor cell engraftment is a manifestation of CMV infection that is long known in clinical hematology as "myelosuppression." Previous studies in a murine model of sex-chromosome mismatched but otherwise syngeneic HCT and infection with murine CMV have shown that transplanted hematopoietic cells (HC) initially home to the BM stroma of recipients but then fail to further divide and differentiate. Data from this model were in line with the hypothesis that infection of stromal cells, which constitute "hematopoietic niches" where hematopoiesis takes place, causes a local deficiency in essential hematopoietins. Based on this understanding, one must postulate that preventing infection of stromal cells should restore the stroma's capacity to support hematopoiesis. Adoptively-transferred antiviral CD8 + T cells prevent lethal CMV disease by controlling viral spread and histopathology in vital organs, such as liver and lungs. It remained to be tested, however, if they can also prevent infection of the BM stroma and thus allow for successful HC engraftment. Here we demonstrate that antiviral CD8 + T cells control stromal infection. By tracking male donor-derived sry + HC in the BM of infected female sry − recipients, we show the CD8 + T cells allow for successful donor HC engraftment and thereby prevent CMV-associated BM aplasia. These data provide a further argument for cytoimmunotherapy of CMV infection after HCT.
Viruses have evolved proteins that bind immunologically relevant cargo molecules at the cell surface for their downmodulation by internalization. Via a tyrosine-based sorting motif YXXΦ in their cytoplasmic tails, they link the bound cargo to the cellular adapter protein-2 (AP2), thereby sorting it into clathrin-triskelion-coated pits for accelerated endocytosis. Downmodulation of CD4 molecules by lentiviral protein NEF represents the most prominent example. Based on connecting cargo to cellular adapter molecules, such specialized viral proteins have been referred to as 'connectors' or 'adapter adapters.' Murine cytomegalovirus glycoprotein m04/gp34 binds stably to MHC class-I (MHC-I) molecules and suspiciously carries a canonical YXXΦ endocytosis motif YRRF in its cytoplasmic tail. Disconnection from AP2 by motif mutation ARRF should retain m04-MHC-I complexes at the cell surface and result in an enhanced silencing of natural killer (NK) cells, which recognize them via inhibitory receptors. We have tested this prediction with a recombinant virus in which the AP2 motif is selectively destroyed by point mutation Y248A, and compared this with the deletion of the complete protein in a Δm04 mutant. Phenotypes were antithetical in that loss of AP2-binding enhanced NK cell silencing, whereas absence of m04-MHC-I released them from silencing. We thus conclude that AP2-binding antagonizes NK cell silencing by enhancing endocytosis of the inhibitory ligand m04-MHC-I. Based on a screen for tyrosine-based endocytic motifs in cytoplasmic tail sequences, we propose here the new hypothesis that most proteins of the m02-m16 gene family serve as 'adapter adapters,' each selecting its specific cell surface cargo for clathrin-assisted internalization.
Interstitial pneumonia is a life-threatening clinical manifestation of cytomegalovirus infection in recipients of hematopoietic cell transplantation (HCT). The mouse model of experimental HCT and infection with murine cytomegalovirus revealed that reconstitution of virus-specific CD8+ T cells is critical for resolving productive lung infection. CD8+ T-cell infiltrates persisted in the lungs after the establishment of latent infection. A subset defined by the phenotype KLRG1+CD62L− expanded over time, a phenomenon known as memory inflation (MI). Here we studied the localization of these inflationary T effector-memory cells (iTEM) by comparing their frequencies in the intravascular and transmigration compartments, the IVC and TMC, respectively, with their frequency in the extravascular compartment (EVC), the alveolar epithelium. Frequencies of viral epitope-specific iTEM were comparable in the IVC and TMC but were reduced in the EVC, corresponding to an increase in KLRG1−CD62L− conventional T effector-memory cells (cTEM) and a decrease in functional IFNγ+CD8+ T cells. As maintained expression of KLRG1 requires stimulation by antigen, we conclude that iTEM lose KLRG1 and convert to cTEM after transmigration into the EVC because pneumocytes are not latently infected and, therefore, do not express antigens. Accordingly, antigen re-expression upon airway challenge infection recruited virus-specific CD8+ T cells to TMC and EVC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.