BackgroundFetal heart rate variability (fHRV) of normal-to-normal (NN) beat intervals provides high-temporal resolution access to assess the functioning of the autonomic nervous system (ANS).AimTo determine critical periods of fetal autonomic maturation. The developmental pace is hypothesized to change with gestational age (GA).Study designProspective longitudinal observational study.Subjects60 healthy singleton fetuses were followed up by fetal magnetocardiographic heart rate monitoring 4–11 times (median 6) during the second half of gestation.Outcome measureFHRV parameters, accounting for differential aspects of the ANS, were studied applying linear mixed models over four predefined pregnancy segments of interest (SoI: <27; 27+0–31+0; 31+1–35+0; >35+1 weeks GA). Periods of fetal active sleep and quiescence were accounted for separately.ResultsSkewness of the NN interval distribution VLF/LF band power ratio and complexity describe a saturation function throughout the period of interest. A decreasing LF/HF ratio and an increase in pNN5 indicate a concurrent shift in sympathovagal balance. Fluctuation amplitude and parameters of short-term variability (RMSSD, HF band) mark a second acceleration towards term. In contrast, fetal quiescence is characterized by sequential, but low-margin transformations; ascending overall variability followed by an increase of complexity and superseded by fluctuation amplitude.ConclusionsAn increase in sympathetic activation, connected with by a higher ability of parasympathetic modulation and baseline stabilization, is reached during the transition from the late 2nd into the early 3rd trimester. Pattern characteristics indicating fetal well-being saturate at 35 weeks GA. Pronounced fetal breathing efforts near-term mirror in fHRV as respiratory sinus arrhythmia.
Disturbances of fetal autonomic brain development can be evaluated from fetal heart rate patterns (HRP) reflecting the activity of the autonomic nervous system. Although HRP analysis from cardiotocographic (CTG) recordings is established for fetal surveillance, temporal resolution is low. Fetal magnetocardiography (MCG), however, provides stable continuous recordings at a higher temporal resolution combined with a more precise heart rate variability (HRV) analysis. A direct comparison of CTG and MCG based HRV analysis is pending. The aims of the present study are: (i) to compare the fetal maturation age predicting value of the MCG based fetal Autonomic Brain Age Score (fABAS) approach with that of CTG based Dawes-Redman methodology; and (ii) to elaborate fABAS methodology by segmentation according to fetal behavioral states and HRP. We investigated MCG recordings from 418 normal fetuses, aged between 21 and 40 weeks of gestation. In linear regression models we obtained an age predicting value of CTG compatible short term variability (STV) of R2 = 0.200 (coefficient of determination) in contrast to MCG/fABAS related multivariate models with R2 = 0.648 in 30 min recordings, R2 = 0.610 in active sleep segments of 10 min, and R2 = 0.626 in quiet sleep segments of 10 min. Additionally segmented analysis under particular exclusion of accelerations (AC) and decelerations (DC) in quiet sleep resulted in a novel multivariate model with R2 = 0.706. According to our results, fMCG based fABAS may provide a promising tool for the estimation of fetal autonomic brain age. Beside other traditional and novel HRV indices as possible indicators of developmental disturbances, the establishment of a fABAS score normogram may represent a specific reference. The present results are intended to contribute to further exploration and validation using independent data sets and multicenter research structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.