Proximal femur fractures represent a major healthcare problem in the aging society. High rates of post-operative infections are linked to risk factors that seem to affect local microcirculation. Patterns and time courses of alterations in microcirculation have, however, not been previously investigated. The aim of this prospective cohort study was to evaluate perioperative changes in microcirculation after trochanteric femur fractures using non-invasive laser-Doppler spectrophotometry to analyze how oxygen saturation (SO 2 ), hemoglobin content (Hb) and blood flow changed before and after surgery, and how these parameters were altered by implant type, gender, smoking, diabetes and age. Measurements were separately recorded for nine locations around the greater trochanter in 2, 8, and 15 mm depths, before surgery and 8, 24, 48 h, 4, 7, and 12 days after surgery in 48 patients. Three implants were compared: Dynamic Hip Screw, Gamma3 Nail, and Percutaneous Compression Plate. Surgery resulted in significant differences between the healthy and injured leg in SO 2 , Hb and flow. Each parameter showed comparable values for both legs prior to surgery. Significantly higher values in SO 2 and flow were registered in women compared to men before and after surgery. Smoking caused significant increases in SO 2 , Hb, and flow only in the superficial layer of the skin after surgery. Diabetes decreased blood flow at 2 and 8 mm depth and increased SO 2 at 8 and 15 mm depth after surgery. Age revealed a significant negative correlation with flow. The ability to increase the flow rate after surgery decreased with age. Comparison of implants indicated the minimally invasive implant PCCP altered microcirculation less than the DHS or the Gamma3 nail. Overall, the proximal femur fracture alone did not alter local skin microcirculation significantly in a way comparable to the effect caused by surgery. In conclusion, microcirculation after proximal femur fractures is highly affected by surgery, gender, smoking, diabetes, age and implant in ways specified in this study.
Standard open and percutaneous minimally invasive surgical procedures co-exist in the treatment of fractures of the thoracolumbar spine. Shorter skin incisions just above the pedicles are used in minimally invasive procedures. Full-length skin incisions and invasive preparations are applied in the standard open approach. While both methods show equivalent rates of intraoperative surgical complications and comparable clinical and radiological outcomes, blood loss and operation time have shown to be decreased in minimally invasive treatment. However, no study so far has investigated differences in microcirculation. This study hypothesized less impairment of microcirculation in the minimally invasive approach compared to the open approach and an improvement of microcirculation over time. A prospective cohort study was conducted using non-invasive laser-Doppler spectrophotometry (an O2C “oxygen to see” device) for measurement of cutaneous and subcutaneous blood oxygenation (SO2), haemoglobin concentration (Hb), and blood flow at depths of 2, 8, and 15 mm at six locations on the skin. Measurements were performed before surgery, 8 and 24 h after surgery, and 2, 4, 7, 12 and 20 days after surgery, however the number of patients measured decreased towards the later time points. Forty patients were included in the study, 20 with each approach (18 females and 22 males). Pair-wise comparison of the types of surgical procedure for each measurement point revealed a significantly higher flow value in the minimally invasive group at one of the measurement points located between the incisions (P = .041). The point-wise analyses of SO2 and Hb did not show significant differences between the approaches. In conclusion, significantly albeit moderately higher flow values could be found in minimally invasive procedures compared to open operations of thoracolumbar fractures in the area of skin that is spared by the incisions.
Both the operative treatment of fractures in a middle-aged (SP) and a geriatric group (PF) lead to significant increasing of IL-6 levels. In view of a comparative surgical burden, these data suggest that age may be a confounding factor for a surgery induced pro-inflammatory response in the early postoperative stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.