The potential of two alkali-tolerant, lignocellulolytic environmental enrichment cultures to improve the anaerobic fermentation of Ca(OH)2-pre-treated wheat straw was studied. The biomethane potential of pre-treated straw was 36% higher than that of untreated straw. The bioaugmentation of pre-treated straw with the enrichment cultures did not enhance the methane yield, but accelerated the methane production during the first week. In acidogenic leach-bed fermenters, a 61% higher volatile fatty acid (VFA) production and a 112% higher gas production, mainly CO2, were observed when pre-treated instead of untreated straw was used. With one of the two enrichment cultures as the inoculum, instead of the standard inoculum, the VFA production increased by an additional 36% and the gas production by an additional 110%, again mainly CO2. Analysis of the microbial communities in the leach-bed processes revealed similar bacterial compositions in the fermenters with pre-treated straw, which developed independently of the used inoculum. It was suggested that the positive metabolic effects with the enrichment cultures observed in both systems were due to initial activities of the alkali-tolerant microorganisms tackling the alkaline conditions better than the standard inocula, whereas the latter dominated in the long term.
Background: For the production of carboxylic acid platform chemicals like medium‐chain fatty acids (MCFA) by anaerobic fermentation, pH control is required. However, adding buffer solutions is ineffective in leach‐bed reactors. Aim: In order to increase the MCFA production by maize silage fermentation and to engineer the process we investigated the effect of solid alkaline iron and manganese additives on the process performance and microbial community dynamics. Results: Without additives, the pH dropped to 3.9 and lactic acid bacteria were favored. Total product yields of 207 ± 5.4 g organic acids (C2‐C6) and alcohols per kg volatile solids were reached. The addition of trace elements increased the pH value and the product spectrum and yields changed. With a commercial iron additive, the product yields were higher (293 ± 15.2 g/kgvolatile solids) and supposedly clostridia used lactic acid for microbial chain elongation of acetic acid producing n‐butyric acid. With the addition of pure Fe(OH)3 or Mn(OH)2, the total product yields were lower than in the other reactors. However, increased production of MCFA and the occurrence of distinct bacterial taxa (Lachnospiraceae, Ruminococcaceae and Megasphaera) related to this metabolic function were observed.Conclusions: The application of alkaline trace metal additives as pH stabilizing agents can mitigate spatial metabolic heterogeneities when trace metal deficient substrates like specific crops or residues thereof are applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.