Prostaglandin E(2) (PGE(2)) is an arachidonic acid metabolite involved in physiological homeostasis and numerous pathophysiological conditions. Furthermore, it has been demonstrated that prostaglandins have a stimulating effect not only on angiogenesis in situ and in vitro but also on chondrocyte proliferation in vitro. Thus, PGE(2) represents an interesting signaling molecule for various tissue engineering strategies. However, under physiological conditions, PGE(2) has a half-life time of only 10 min, which limits its use in biomedical applications. In the present study, we investigated if the incorporation of PGE(2) into biodegradable poly-L-lactide-co-glycolide microspheres results in a prolonged release of this molecule in its active form. PGE(2)-modified microspheres were produced by a cosolvent emulsification method using CHCl(3) and HFIP as organic solvents and PVA as emulsifier. Thirteen identical batches were produced; and to each batch 1.0 mL of serum-free medium was added. The medium was removed at defined time points and then analyzed by gas chromatography tandem mass spectrometry (GC/MS/MS) to measure the residual PGE(2) content. In this study we demonstrated the prolonged release of PGE(2), showing a linear increase over the first 12 h, followed by a plateau and a slow decrease. The microspheres were further characterized by scanning electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.