Heterologous priming with the ChAdOx1 nCoV-19 vector vaccine followed by boosting with a messenger RNA vaccine (BNT162b2 or mRNA-1273) is currently recommended in Germany, although data on immunogenicity and reactogenicity are not available. In this observational study we show that, in healthy adult individuals (n = 96), the heterologous vaccine regimen induced spike-specific IgG, neutralizing antibodies and spike-specific CD4 T cells, the levels of which which were significantly higher than after homologous vector vaccine boost (n = 55) and higher or comparable in magnitude to homologous mRNA vaccine regimens (n = 62). Moreover, spike-specific CD8 T cell levels after heterologous vaccination were significantly higher than after both homologous regimens. Spike-specific T cells were predominantly polyfunctional with largely overlapping cytokine-producing phenotypes in all three regimens. Recipients of both the homologous vector regimen and the heterologous vector/mRNA combination reported greater reactogenicity following the priming vector vaccination, whereas heterologous boosting was well tolerated and comparable to homologous mRNA boosting. Taken together, heterologous vector/mRNA boosting induces strong humoral and cellular immune responses with acceptable reactogenicity profiles.
Comparative analyses of the immunogenicity and reactogenicity of homologous and heterologous SARS-CoV-2 vaccine-regimens will inform optimized vaccine strategies. Here we analyze the humoral and cellular immune response following heterologous and homologous vaccination strategies in a convenience cohort of 331 healthy individuals. All regimens induce immunity to the vaccine antigen. Immunity after vaccination with ChAdOx1-nCoV-19 followed by either BNT162b2 (n = 66) or mRNA-1273 (n = 101) is equivalent to or more pronounced than homologous mRNA-regimens (n = 43 BNT162b2, n = 59 mRNA-1273) or homologous ChAdOx1-nCoV-19 vaccination (n = 62). We note highest levels of spike-specific CD8 T-cells following both heterologous regimens. Among mRNA-containing combinations, spike-specific CD4 T-cell levels in regimens including mRNA-1273 are higher than respective combinations with BNT162b2. Polyfunctional T-cell levels are highest in regimens based on ChAdOx1-nCoV-19-priming. All five regimens are well tolerated with most pronounced reactogenicity upon ChAdOx1-nCoV-19-priming, and ChAdOx1-nCoV-19/mRNA-1273-boosting. In conclusion, we present comparative analyses of immunogenicity and reactogenicity for heterologous vector/mRNA-boosting and homologous mRNA-regimens.
Heterologous priming with the ChAdOx1-nCoV-19 vector-vaccine followed by boosting with an mRNA-vaccine is currently recommended in Germany, although data on immunogenicity and reactogenicity are not available. Here we show that the heterologous regimen induced spike-specific IgG, neutralizing antibodies, and spike-specific CD4 T-cells, which were significantly more pronounced than after homologous vector boost, and higher or comparable in magnitude to the homologous mRNA regimens. Moreover, spike-specific CD8 T-cell levels after heterologous vaccination were significantly higher than after both homologous regimens. Cytokine expression profiling showed a predominance of polyfunctional T-cells expressing IFNγ, TNFα and IL-2 with subtle differences between regimens. Both recipients of the homologous vector-regimen and the heterologous vector/mRNA-combination were most affected by the priming vector-vaccination, whereas heterologous boosting was well tolerated and comparable to homologous mRNA-boosting. Taken together, heterologous vector-mRNA boosting induces strong humoral and cellular immune responses with acceptable reactogenicity profile. This knowledge will have implications for future vaccine strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.