Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research, full-factorial experiments performed across seasons in multispecies, cross-trophic-level settings are essential as they permit a more realistic estimation of direct and indirect effects as well as the relative importance of the effects of both major environmental stressors on ecosystems. In benthic mesocosm experiments, we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels had only minor effects, warming had strong and persistent effects on grazers, and the resulting effects on the Fucus community were found to be season dependent. In late summer, a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species, resulting in overgrowth of Fucus thalli by epiphytes. In fall/winter (outside the growing season of epiphytes), intensified grazing under warming resulted in a significant reduction in Fucus biomass. Thus, we were able to confirm the prediction that future increases in water temperatures will influence marine food-web processes by altering top-down control, but we were also able to show that specific consequences for food-web structure depend on the season. Since F. vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implies a loss of key functions and services such as provision of nutrient storage, substrate, food, shelter, and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.
The plea for using more "realistic," community-level, investigations to assess the ecological impacts of global change has recently intensified. Such experiments are typically more complex, longer, more expensive, and harder to interpret than simple organism-level benchtop experiments. Are they worth the extra effort? Using outdoor mesocosms, we investigated the effects of ocean warming (OW) and acidification (OA), their combination (OAW), and their natural fluctuations on coastal communities of the western Baltic Sea during all four seasons. These communities are dominated by the perennial and canopy-forming macrophyte Fucus vesiculosus-an important ecosystem engineer Baltic-wide. We, additionally, assessed the direct response of organisms to temperature and pH in benchtop experiments, and examined how well organism-level responses can predict community-level responses to the dominant driver, OW. OW affected the mesocosm communities substantially stronger than acidification. OW provoked structural and functional shifts in the community that differed in strength and direction among seasons. The organism-level response to OW matched well the community-level response of a given species only under warm and cold thermal stress, that is, in summer and winter. In other seasons, shifts in biotic interactions masked the direct OW effects. The combination of direct OW effects and OW-driven shifts of biotic interactions is likely to jeopardize the future of the habitat-forming macroalga F. vesiculosus in the Baltic Sea. Furthermore, we conclude that seasonal mesocosm experiments are essential for our understanding of global change impact because they take into account the important fluctuations of abiotic and biotic pressures.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.Additional Supporting Information may be found in the online version of this article.
Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype×genotype interactions of host and pathogen from different regions (10–100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist×eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence.
Coastal marine ecosystems have been under high anthropogenic pressure and it can be assumed that prevalent local perturbation interacts with rising global stressors under proceeding climate change. Understanding their effective pathways and cumulative effects is of high relevance not only with regard to future risk assessment, but also for current ecosystem management. In benthic mesocosms, we factorially tested the effects of one global (combined elevated seawater temperature and CO2 concentration) and one local (nutrient enrichment) stressor on a common coastal Baltic seaweed system (Fucus vesiculosus). Both treatments in combination had additive negative impacts on the seaweed—epiphyte—mesograzer system by altering its regulatory mechanisms. That is, warming decreased the biomass of two mesograzer species (weakened top‐down control), whereas moderate nutrient enrichment increased epiphyte biomass (intensified bottom‐up control), which ultimately resulted in a significant biomass reduction of the foundation seaweed. Our results suggest that climate change impacts might be underestimated if local pressures are disregarded. Furthermore, they give implication for local ecological management as the mitigation of local perturbation may limit climate change impacts on marine ecosystems.
Understanding the ecological mechanisms that underlie species diversity decline in response to environmental change has become an urgent objective in current ecological research. Not only direct (lethal) effects on single species but also indirect effects altering biotic interactions between species within and across trophic levels comprise the driving force of ecosystem change. In an experimental marine benthic microalgae–grazer system we tested for indirect effects of moderate temperature change on algal diversity by manipulation of temperature, nutrient supply and grazer density. In our model system warming did not exert indirect effects on microalgal diversity via effects on resource competition. However, moderate warming strengthened consumer control and thereby indirectly affected algal community structure which ultimately resulted in decreased diversity. Only in low temperature and low nutrient regimes did the antagonizing mechanisms of bottom–up and top–down regulation establish a balancing effect on algal diversity within 29 days (corresponding to 15–29 algae generations). Effects of thermal habitat change did not appear before 9–18 algae generations, which points to the relevance of longer‐term experiments and ecological monitoring in order to separate transient biotic responses and subtle changes of community dynamics in consequence to global change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.