Researchers using functional near infrared spectroscopy (fNIRS) are increasingly aware of the problem that conventional filtering methods do not eliminate systemic noise at frequencies overlapping with the task frequency. This is a problem when signals are averaged for analysis, even more so when single trial data are used as in online neurofeedback or BCI applications where insufficiently preprocessed data means feeding back noise instead of brain activity or when looking for brain-behavior relationships on a trial-by-trial basis. For removing this task-related noise statistical approaches have been proposed. Yet as evidence is lacking on how these approaches perform on independent data, choosing one approach over another can be difficult. Here signal quality at the single trial level was considered together with statistical effects to inform this choice. Compared were conventional band-pass filtering and wavelet minimum description length detrending and the combination of both with a more elaborate, published preprocessing approach for a motor execution—motor imagery data set. Temporal consistency between Δ[HbO] and Δ[HbR] and two measures of the spatial specificity of signals that are proposed here served as measures of data quality. Both improved strongly for the combinationed preprocessing approaches. Statistical effects showed a strong tendency toward getting smaller for the combined approaches. This underlines the importance to adequately deal with noise in fNIRS recordings and demonstrates how the quality of statistical correction approaches can be estimated.
Compared to functional magnetic resonance imaging (fMRI), functional near infrared spectroscopy (fNIRS) has several advantages that make it particularly interesting for neurofeedback (NFB). A pre-requisite for NFB applications is that with fNIRS, signals from the brain region of interest can be measured. This study focused on the supplementary motor area (SMA). Healthy older participants (N = 16) completed separate continuous-wave (CW-) fNIRS and (f)MRI sessions. Data were collected for executed and imagined hand movements (motor imagery, MI), and for MI of whole body movements. Individual anatomical data were used to (i) define the regions of interest for fMRI analysis, to (ii) extract the fMRI BOLD response from the cortical regions corresponding to the fNIRS channels, and (iii) to select fNIRS channels. Concentration changes in oxygenated ($$\Delta [HbO]$$ Δ [ H b O ] ) and deoxygenated ($$\Delta [HbR]$$ Δ [ H b R ] ) hemoglobin were considered in the analyses. Results revealed subtle differences between the different MI tasks, indicating that for whole body MI movements as well as for MI of hand movements $$\Delta [HbR]$$ Δ [ H b R ] is the more specific signal. Selection of the fNIRS channel set based on individual anatomy did not improve the results. Overall, the study indicates that in terms of spatial specificity and task sensitivity SMA activation can be reliably measured with CW-fNIRS.
Significance: Functional Near Infrared Spectroscopy (fNIRS) is a promising tool for neurofeedback (NFB) or brain computer interfaces (BCIs). However, fNIRS signals are typically highly contaminated by systemic activity (SA) artifacts and, if not properly corrected, NFB or BCIs run the risk of being based on noise instead of brain activity. This risk can likely be reduced by correcting for SA, in particular when short distance channels (SDCs) are available. Literature comparing correction methods with and without SDCs is still sparse, specifically comparisons considering single trials are lacking. Aim: This study aimed at comparing the performance of SA correction methods with and without SDCs. Approach: Semi-simulated and real motor task data of healthy elderly individuals were used. Correction methods without SDCs included a simple and a more advanced spatial filter. Correction methods with SDCs included a regression approach considering only the closest SDC and two GLM-based methods, one including all eight SDCs and one using only two a priori selected SDCs as regressors. All methods were compared to data uncorrected for SA and correction performance was assessed with quality measures quantifying signal improvement and spatial specificity at single trial level. Results: All correction methods were found to improve signal quality and to enhance spatial specificity as compared to the uncorrected data. Methods with SDCs usually outperformed methods without SDCs. Correction methods without SDCs tended to overcorrect the data. However, the exact pattern of results and the degree of differences observable between correction methods varied between semi-simulated and real data, and also between quality measures. Conclusions: Overall, results confirmed that both Δ[HbO] and Δ[HbR] are affected by SA and that correction methods with SDCs outperform methods without SDCs. Nonetheless, improvements in signal quality can also be achieved without SDCs and should therefore be given priority over not correcting for SA.
Significance: Functional near-infrared spectroscopy (fNIRS) is a promising tool for neurofeedback (NFB) or brain-computer interfaces (BCIs). However, fNIRS signals are typically highly contaminated by systemic activity (SA) artifacts, and, if not properly corrected, NFB or BCIs run the risk of being based on noise instead of brain activity. This risk can likely be reduced by correcting for SA, in particular when short-distance channels (SDCs) are available. Literature comparing correction methods with and without SDCs is still sparse, specifically comparisons considering single trials are lacking.Aim: This study aimed at comparing the performance of SA correction methods with and without SDCs.Approach: Semisimulated and real motor task data of healthy older adults were used. Correction methods without SDCs included a simple and a more advanced spatial filter. Correction methods with SDCs included a regression approach considering only the closest SDC and two GLM-based methods, one including all eight SDCs and one using only two a priori selected SDCs as regressors. All methods were compared with data uncorrected for SA and correction performance was assessed with quality measures quantifying signal improvement and spatial specificity at single trial level.Results: All correction methods were found to improve signal quality and enhance spatial specificity as compared with the uncorrected data. Methods with SDCs usually outperformed methods without SDCs. Correction methods without SDCs tended to overcorrect the data. However, the exact pattern of results and the degree of differences observable between correction methods varied between semisimulated and real data, and also between quality measures.Conclusions: Overall, results confirmed that both Δ½HbO and Δ½HbR are affected by SA and that correction methods with SDCs outperform methods without SDCs. Nonetheless, improvements in signal quality can also be achieved without SDCs and should therefore be given priority over not correcting for SA.
Significance: The expansion of functional near-infrared spectroscopy (fNIRS) methodology and analysis tools gives rise to various design and analytical decisions that researchers have to make. Several recent efforts have developed guidelines for preprocessing, analyzing, and reporting practices. For the planning stage of fNIRS studies, similar guidance is desirable. Study preregistration helps researchers to transparently document study protocols before conducting the study, including materials, methods, and analyses, and thus, others to verify, understand, and reproduce a study. Preregistration can thus serve as a useful tool for transparent, careful, and comprehensive fNIRS study design.Aim: We aim to create a guide on the design and analysis steps involved in fNIRS studies and to provide a preregistration template specified for fNIRS studies.Approach: The presented preregistration guide has a strong focus on fNIRS specific requirements, and the associated template provides examples based on continuous-wave (CW) fNIRS studies conducted in humans. These can, however, be extended to other types of fNIRS studies.Results: On a step-by-step basis, we walk the fNIRS user through key methodological and analysis-related aspects central to a comprehensive fNIRS study design. These include items specific to the design of CW, task-based fNIRS studies, but also sections that are of general importance, including an in-depth elaboration on sample size planning.Conclusions: Our guide introduces these open science tools to the fNIRS community, providing researchers with an overview of key design aspects and specification recommendations for comprehensive study planning. As such it can be used as a template to preregister fNIRS studies or merely as a tool for transparent fNIRS study design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.