Knowledge of concentrations or loads in wastewater flows is a basic prerequisite for the design of wastewater treatment units and the assessment of the environmental impacts. With respect to new sanitation concepts that are based on the source-separation of domestic wastewater flows not much general data is available yet on characteristics or design values of the different flows. A desk study of more than 130 references was carried out in order to arrive at design values for different source-separated wastewater flows including the fractions urine, faeces and greywater. The evaluation was carried out focussing on European data. The different values were analysed by the use of statistical parameters. In order to arrive at design values for different parameters, the median as well as minimum-maximum ranges of the available data were calculated. The collected data include volumes and characteristics like organic pollution (COD and BOD), nutrients (N, P, K & S) and heavy metals for the different source-separated flows. Loads and concentrations are listed respectively. A comparison is drawn between data from different regions in order to assess the impact of differences in nutrition and habits.
Material Flow Analysis is a method that can be used to assess sanitation systems with regard to their environmental impacts. Modelling water and nutrients flows of the urban water, wastewater and waste system can highlight risks for environmental pollution and can help evaluating the potential for linking sanitation with resource recovery and agricultural production. This study presents the results of an analysis of nitrogen and phosphorus flows of Arba Minch town in South Ethiopia. The current situation is modelled and possible scenarios for upgrading the town's sanitation system are assessed. Two different scenarios for nutrient recovery are analysed. Scenario one includes co-composting municipal organic waste with faecal sludge from pit latrines and septic tanks as well as the use of compost in agriculture. The second scenario based on urine-diversion toilets includes application of urine as fertiliser and composting of faecal matter. In order to allow for variations in the rate of adoption, the model can simulate varying degrees of technology implementation. Thus, the impact of a step-wise or successive approach can be illustrated. The results show that significant amounts of plant nutrients can be provided by both options, co-composting and urine diversion.
Hamburg is a growing metropolitan city. The increase in sealed surfaces of about 0.36% per year and the subsequent increased runoff impacts on the city's wastewater infrastructure. Further potential risks to the drainage infrastructure arise also from effects of climate change, e.g. increased intensity and frequency of heavy rainfalls. These challenges were addressed in the Rain InfraStructure Adaption (RISA) project conducted 2009-2015 by HAMBURG WASSER and the State Ministry for Environment and Energy, supported by several municipal stakeholders. RISA addressed intensifying conflicts in the context of urban development and stormwater management at that time. Major results of the project are improvements and recommendations for adequate consideration of stormwater management issues during urban planning as well as new funding mechanisms for stormwater management measures. The latter topic resulted in the introduction of a separated stormwater charge based on the amount of sealed area connected to the sewer system of each property. For both undertakings - the RISA project and the introduction of the separated stormwater charge - a novel, comprehensive, digital database was built. Today, these geographical information system (GIS)-based data offer various scale-independent analysis and information opportunities, which facilitate the day-to-day business of HAMBURG WASSER and stormwater management practice in Hamburg.
One of the largest urban development projects at present in Hamburg is the conversion of former military barracks into a new residential area for about 630 households, called Jenfelder Au. The urban design concept for this 35 ha area follows a high quality approach to develop a carbon-neutral, attractive neighbourhood for approx. 2,000 inhabitants abundant with green space and urban water. HAMBURG WASSER, Hamburg's water supply and wastewater utility, is rethinking the way of wastewater management by implementing an integrated concept for decentralised wastewater treatment and energy production – the so-called HAMBURG WATER Cycle® (HWC) – in this new residential area, based on source control of wastewater. Stormwater, greywater and blackwater are collected separately and then treated separately on site in Jenfelder Au. The realisation of the HWC will be the hitherto largest demonstration of a resource oriented sanitation concept working with vacuum technology for the collection of concentrated blackwater. This concept intends to establish synergy between wastewater management, waste management and energy production, and contributes to an improved local natural water cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.