OBJECTIVEFibroblast growth factor (FGF)-21 improves insulin sensitivity and lipid metabolism in obese or diabetic animal models, while human studies revealed increased FGF-21 levels in obesity and type 2 diabetes. Given that FGF-21 has been suggested to be a peroxisome proliferator–activator receptor (PPAR) α–dependent regulator of fasting metabolism, we hypothesized that free fatty acids (FFAs), natural agonists of PPARα, might modify FGF-21 levels.RESEARCH DESIGN AND METHODSThe effect of fatty acids on FGF-21 was investigated in vitro in HepG2 cells. Within a randomized controlled trial, the effects of elevated FFAs were studied in 21 healthy subjects (13 women and 8 men). Within a clinical trial including 17 individuals, the effect of insulin was analyzed using an hyperinsulinemic-euglycemic clamp and the effect of PPARγ activation was studied subsequently in a rosiglitazone treatment trial over 8 weeks.RESULTSOleate and linoleate increased FGF-21 expression and secretion in a PPARα-dependent fashion, as demonstrated by small-interfering RNA–induced PPARα knockdown, while palmitate had no effect. In vivo, lipid infusion induced an increase of circulating FGF-21 in humans, and a strong correlation between the change in FGF-21 levels and the change in FFAs was observed. An artificial hyperinsulinemia, which was induced to delineate the potential interaction between elevated FFAs and hyperinsulinemia, revealed that hyperinsulinemia also increased FGF-21 levels in vivo, while rosiglitazone treatment had no effect.CONCLUSIONSThe results presented here offer a mechanism explaining the induction of the metabolic regulator FGF-21 in the fasting situation but also in type 2 diabetes and obesity.
The result of this study is that the actual daily load of DEHP for a 2-kg newborn is 30% higher than measured before. The rate of extraction is dependent on the time of contact between solution and tubing. If PVC-infusion systems are used, solutions should be as cold as possible, and infusion time should be as short as possible.
The mechanism of iv lipid and heparin infusion-induced elevation of circulating androgens described here might contribute to the development of hyperandrogenism in women with PCOS and suggests that lowering of hyperlipidemia might be a potential therapeutic target in patients with PCOS to treat hyperandrogenemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.