The comprehensive procedure of wood sample preparation, including tree-ring dissection, cellulose extraction, homogenization and packing for stable isotope analysis, is labour intensive and time consuming. Based on a brief compilation of existing methods, we present a methodological approach from pre-analyses considerations to wood sample preparation, semi-automated chemical extraction of cellulose from tree-ring cross-sections, and tree-ring dissection for stable isotope ratio mass spectrometry: the Cross-Section Extraction and Dissection (CSED) guideline. Following the CSED guideline can considerably increase efficiency of tree-ring stable isotope measurement compared to classical methods < ABS-P > We introduce a user-friendly device for cellulose extraction, allowing simultaneous treatment of wood cross-sections of a total length of 180 cm (equivalent to 6 increment cores of 30 cm length) and thickness of 0.6-2.0 mm. After cellulose extraction, treering structures of 10 tree species (coniferous and angiosperm wood) with different wood growth rates and treering boundaries, largely remained well identifiable. Further, we demonstrate that tree rings from cellulose cross-sections can be dissected at annual to intraseasonal resolution, utilizing simple manual devices as well as sophisticated UV-laser microdissection microscopes in a way that sample homogenization is no longer necessary in most cases. We investigate seasonal precipitation signals in high-resolution intra-annual δ 18 O cellulose values from African baobab, performed by using UV-laser microdissection microscopes.
This is a repository copy of Tropical tree growth driven by dry-season climate variability.
Summary: According to the Intergovernmental Panel on Climate Change (IPCC), all of Africa is very likely to warm up more than the global average during this century. Especially (semi-)arid regions are expected to experience particularly high warming and possibly catastrophic droughts. However, assessments of the impacts of climate change on these regions are currently impeded by a lack of transregional high temporal resolution proxy data for the African continent. Baobab trees are widely distributed in (semi-)arid Africa and can reach ages of up to 2000 years. This pilot study was aimed at investigating African baobabs, Adansonia spp., from a site in Botswana using multiple dendroclimatological methods. Increment cores from 16 individual baobabs growing on Kubu Island (20°53' S, 25°49' E), a granite pluton located in the Kalahari, were collected in June 2011 to test for annual growth and the species' utility for palaeoclimatic studies. Due to the particular wood fabric and relatively high water content, baobab increment cores were packed in air-tight opaque tubes and stored in a freezer to prevent drying and mould formation. The complicated wood anatomical structure was found to be analysed best using a microscope with incident UV light, allowing tree-ring boundaries to be distinguished. Nonetheless, potential differences in individual site conditions, as well as diverse tree ages, caused conventional dendrochronological crossdating to fail. Missing and false tree rings could be identified due to the strong relationship between tree-ring width and annual precipitation amount allowing the development of a preliminary 50 year-long baobab chronology . Subsequently, stable carbon and oxygen isotope analyses revealed significant correlations of Δ 13 C and δ 18O of tree rings with climate data. Year-to-year isotope variability and trends were found to be in good agreement with established models of fractionation. Intrinsic water-use efficiency has mainly increased over the study period (2-30 %). Despite the demonstrated high potential of African baobabs as a valuable high-resolution climate archive, we conclude that more dendrochronological calibration studies are required at various sites in southern Africa. Furthermore, ecophysiological monitoring of climate and stable isotope signal transfer from the atmosphere, through soil and leaves into the tree rings is necessary to fully understand tree-ring formation and climate response of the African baobab.Zusammenfassung: Laut Weltklimarat (Intergovernmental Panel on Climate Change, IPCC) wird Afrika sehr wahrscheinlich eine Erwärmung erfahren, die über dem globalen Mittel liegen wird. Speziell aride Gebiete sind durch eine hohe Erwärmung und mögliche katastrophale Dürren gefährdet. Den Einschätzungen der Auswirkungen des Klimawandels auf diese Regionen steht aber derzeit ein großer Mangel an überregionalen, zeitlich hochaufgelösten und präzise datierten Proxy-Datenreihen für den afrikanischen Kontinent entgegen. Baobabs sind im (semi-)ariden Afrika weit verbreitet und k...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.