Background and Aim Stomatal regulation allows plants to promptly respond to water stress. However, our understanding of the impact of above and belowground hydraulic traits on stomatal regulation remains incomplete. The objective of this study was to investigate how key plant hydraulic traits impact transpiration of maize during soil drying. We hypothesize that stomatal response to soil drying is related to a loss in soil hydraulic conductivity at the root-soil interface, which in turn depends on plant hydraulic traits. Methods We investigate the response of 48 contrasting maize (Zea mays L.) genotypes to soil drying, utilizing a novel phenotyping facility. In this context, we measure the relationship between leaf water potential, soil water potential, soil water content and transpiration, as well as root, rhizosphere and aboveground plant traits. Key Results Genotypes differed in their responsiveness to soil drying. The critical soil water potential at which plants started decreasing transpiration was related to a combination of above- and belowground traits: genotypes with a higher maximum transpiration and plant hydraulic conductance as well as a smaller root and rhizosphere system closed stomata at less negative soil water potentials. Conclusions Our results demonstrate the importance of belowground hydraulics for stomatal regulation and hence drought responsiveness during soil drying. Furthermore, this finding supports the hypothesis that stomata start to close when soil hydraulic conductivity drops at the root-soil interface.
<p>The spatial arrangement of the soil surrounding the root can improve plant resource acquisition under drought and is closely related to the fate of soil organic carbon (SOC). Thus, the formation of soil structure and the establishment of a stable rhizosheath can potentially improve plant drought resistance and contribute to maintained crop yields during drought events. Yet, soil structure formation is a complex process determined by the interaction between various functional plant and soil properties, such as the soil (micro)biome, root exudation, or root morphological characteristics. To date, it is not understood how water scarcity affects soil aggregation in the vicinity of roots, by which functional traits these drought effects can be modified, and how this feedbacks on the cycling of SOC.&#160;</p> <p>Thus, we investigated drought effects on rhizosheath properties and their link with functional plant traits. We conducted a greenhouse experiment with 38 maize varieties where half of the plants were grown under optimum moisture, while the second half of replicates were subjected to drought stress after an initial establishment phase. For each plant, the rhizosheath soil was sampled and its aggregate size distribution, carbon (C) and nitrogen (N) content, and the proportion of newly maize-derived C were analysed via natural abundance <sup>13</sup>C. In addition, we recorded functional plant and rhizosphere traits, such as morphological and chemical root properties, microbial enzyme activities, and plant biomass.</p> <p>Drought-stressed plants formed lower amounts of rhizosheath, with a decreased physical aggregate stability and increased concentrations of SOC, N, and newly maize-derived C. Furthermore, under drought larger proportions of the elements were allocated into the microaggregate fractions. In particular, maize-derived C, along with N, accumulated under drought stress in the smaller aggregate size classes of the rhizosheath. Maize varieties forming larger amounts of roots under drought stress tended to maintain higher macroaggregate stability in the rhizosheath. In contrast, cultivars that invested little in root growth but promoted higher microbial enzyme activities in the rhizosheath and maintained root N contents under drought were associated with a strong accumulation of maize-C and N in the smaller aggregate size classes.&#160;</p> <p>Trait-based experimental approaches, such as the one presented here, are deepening our mechanistic understanding of drought effects in the crop rhizosheath and can thus help to guide future crop selection for improved drought resistance.</p>
<p>Limited water supply is one of the largest impediments to food production worldwide in the light of climate change and increasing food demand. Stomatal regulation allows plants to promptly react to water stress and regulate water use. Although the coordination between stomatal closure and aboveground hydraulics has extensively been studied, our understanding of the impact of belowground hydraulics on stomatal regulation remains, as yet, incomplete. The overall objective of this study was to investigate the impact of belowground hydraulic conductivity as affected by differences in expressions of root and rhizosphere traits on the water use regulation of different maize genotypes.</p><p>We have utilized a novel phenotyping facility to investigate the response of a selection of 48 maize (<em>Zea mays&#160;</em>L.) genotypes exhibiting different root and rhizosphere traits to soil drying. We measured the relation between leaf water potential, soil water potential, soil water content and transpiration rate, as well as root and rhizosphere traits (e.g. root length, rhizosheath mass) between genotypes. Our hypothesis is that stomatal response to soil drying is related to a loss in soil hydraulic conductivity and that key root and rhizosphere hydraulic traits affect such relation.</p><p>We found that the genotypes differed in their responsiveness to drought and that such differences were related to belowground hydraulic traits. The critical soil water content at which plants started to decrease transpiration was related to a combination of plant- and rhizosphere traits (namely plant hydraulic conductance, maximum transpiration rate, root length and rhizosheath mass). Genotypes with a higher maximum transpiration rate and a higher plant hydraulic conductance and a smaller root system closed stomata in wetter soil conditions, meaning earlier in the drying process. This finding is explained by a soil-plant hydraulic model that assumes that stomata start to close when the soil hydraulic conductance of the soil-plant continuum starts to decline. Those findings stress the importance of belowground hydraulic properties on stomatal regulation and thereby drought responsiveness.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.