Taken together, we provide first evidence for positive adhesiotropy as a new cardiac function of sympathetic signaling. Positive adhesiotropy is dependent on Pg phosphorylation at S665 by protein kinase A. This mechanism may be of high medical relevance because loss of junctional Pg is a hallmark of arrhythmogenic cardiomyopathy.
Taken together, formation of sVE-cadherin is associated and contributes to inflammation-induced breakdown of endothelial barrier functions by inhibition of VE-cadherin binding. The underlying mechanism of VE-cadherin cleavage involves ADAM10 and appears to be of clinical relevance since sVE-cadherin was augmented in patients with severe sepsis.
Pemphigus is an autoimmune blistering skin disease caused primarily by autoantibodies against desmoglein (Dsg)1 and 3. Here, we characterized the mechanisms engaged by pemphigus IgG from patients with different clinical phenotypes and autoantibody profiles. All pemphigus vulgaris (PV) and pemphigus foliaceus (PF) IgG and AK23, a monoclonal mouse antibody against Dsg3, caused loss of cell cohesion, cytokeratin retraction and p38MAPK activation. Strong alterations in Dsg3 distribution were caused by mucosal (aDsg3 antibodies), mucocutaneous (aDsg1 + aDsg3) as well as atypical (aDsg3) PV-IgG. All PV-IgG fractions and AK23 compromised Dsg3 but not Dsg1 binding and enhanced Src activity. In contrast, rapid Ca2+ influx and Erk activation were induced by mucocutaneous PV-IgG and pemphigus foliaceus (PF) IgG (aDsg1) whereas cAMP was increased by mucosal and mucocutaneous PV-IgG only. Selective inhibition of p38MAPK, Src or PKC blocked loss of keratinocyte cohesion in response to all autoantibody fractions whereas Erk inhibition was protective against mucocutaneous PV-IgG and PF-IgG only. These results demonstrate that signaling patterns parallel the clinical phenotype as some mechanisms involved in loss of cell cohesion are caused by antibodies targeting Dsg3 whereas others correlate with autoantibodies against Dsg1. The concept of key desmosome regulators may explain observations from several experimental models of pemphigus.
Desmosomes provide strong intercellular cohesion essential for the integrity of cells and tissues exposed to continuous mechanical stress. For desmosome assembly, constitutively synthesized desmosomal cadherins translocate to the cell-cell border, cluster and mature in the presence of Ca(2+) to stable cell contacts. As adherens junctions precede the formation of desmosomes, we investigated in this study the relationship between the classical cadherin E-cadherin and the desmosomal cadherin Desmoglein 3 (Dsg3), the latter of which is indispensable for cell-cell adhesion in keratinocytes. By using autoantibodies from patients with the blistering skin disease pemphigus vulgaris (PV), we showed in loss of function studies that E-cadherin compensates for effects of desmosomal disassembly. Overexpression of E-cadherin reduced the loss of cell cohesion induced by PV autoantibodies and attenuated activation of p38 MAPK. Silencing of E-cadherin abolished the localization of Dsg3 at the membrane and resulted in a shift of Dsg3 from the cytoskeletal to the non-cytoskeletal protein pool which conforms to the notion that E-cadherin regulates desmosome assembly. Mechanistically, we identified a complex consisting of extradesmosomal Dsg3, E-cadherin, β-catenin and Src and that the stability of this complex is regulated by Src. Moreover, Dsg3 and E-cadherin are phosphorylated on tyrosine residues in a Src-dependent manner and Src activity is required for recruiting Dsg3 to the cytoskeletal pool as well as for desmosome maturation towards a Ca(2+)-insensitive state. Our data provide new insights into the role of E-cadherin and the contribution of Src signaling for formation and maintenance of desmosomal junctions.
Tightly controlled intercellular adhesion is crucial for the integrity and function of the epidermis. The keratin filament cytoskeleton anchors desmosomes, supramolecular complexes required for strong intercellular adhesion. We tested whether keratin filaments control cell adhesion by regulating the adhesive properties of desmosomal cadherins such as desmoglein (Dsg) 3. Atomic force microscopy and fluorescence recovery after photobleaching experiments showed reduced Dsg3 adhesive forces and membrane stability in murine keratinocytes lacking all keratin filaments. Impairment of the actin cytoskeleton also resulted in decreased Dsg3 immobilization but did not affect Dsg3 binding properties, indicating that the latter are exclusively controlled by keratins. Reduced binding forces were dependent on p38 mitogen-activated protein kinase activity, which was deregulated in keratin-deficient cells. In contrast, inhibition of protein kinase C signaling, which is known to be controlled by keratins, promoted and spatially stabilized Dsg3-mediated interactions in the membrane. These results show a previously unreported mechanism for how keratins stabilize intercellular adhesion on the level of single desmosomal adhesion molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.