The use of silver nanoparticles (AgNPs) in consumer products such as textiles leads to their discharge into wastewater and consequently to a transfer of the AgNPs to soil ecosystems via biosolids used as fertilizer. In urban wastewater systems (e.g., sewer, wastewater treatment plant [WWTP], anaerobic digesters) AgNPs are efficiently converted into sparingly soluble silver sulfides (Ag 2 S), mitigating the toxicity of the AgNPs. However, long-term studies on the bioavailability and effects of sulfidized AgNPs on soil microorganisms are lacking. Thus we investigated the bioavailability and long-term effects of AgNPs (spiked in a laboratory WWTP) on soil microorganisms. Before mixing the biosolids into soil, the sludges were either anaerobically digested or directly dewatered. The effects on the ammonium oxidation process were investigated over 140 d. Transmission electron microscopy (TEM) suggested an almost complete sulfidation of the AgNPs analyzed in all biosolid samples and in soil, with Ag 2 S predominantly detected in long-term incubation experiments. However, despite the sulfidation of the AgNPs, soil ammonium oxidation was significantly inhibited, and the degree of inhibition was independent of the sludge treatment. The results revealed that AgNPs sulfidized under environmentally relevant conditions were still bioavailable to soil microorganisms. Consequently, Ag 2 S may exhibit toxic effects over the long term rather than the short term. Environ Toxicol Chem 2017;36:3305-3313.
Background: Before chemicals, pesticides and biocides are registered and approved, their effects on soil microorganisms must be tested, specifically their impact on nitrogen transformation. Following a request from the European Food Safety Authority (EFSA), the Panel on Plant Protection Products and their Residues provided an opinion document evaluating the science behind the risk assessment of plant protection products in the context of soil-dwelling organisms. The EFSA document concludes that the most relevant community-based microbial test systems should cover the widest possible range of metabolic processes without compromising test sensitivity. The EFSA document refers to the MicroResp test system, stating that although it has not been used to study the effects of pesticides on soil microbial processes, its capability should be investigated in the future. In the scope of harmonization approaches, the recommendations in the EFSA document covering pesticides could also influence the risk assessment and regulation of other kinds of chemicals, including silver nanomaterials. We therefore used the silver nanomaterial NM-300K as a model substance to evaluate the sensitivity of three functional tests covering the activities of different microbial fractions: (1) the potential ammonium oxidation (PAO) test, which considers the first step in nitrification; (2) the Micro-Resp test, which determines respiratory activity by measuring CO 2 evolution; and (3) a colorimetric test system for exoenzyme activity. We also surveyed bacterial 16S rRNA sequence diversity by next-generation sequencing (NGS). Results: There was no major difference in the general sensitivity of the tests, each of which revealed significant effects at silver nanomaterial concentrations of at least 1.67 mg/kg. The PAO test was a robust and sensitive indicator of toxicity, and concentration-effect relationships were calculated for every time interval. The effects on respiration and exoenzyme activities were more variable. Among the three functional tests, the selected exoenzyme activities showed the weakest concentration-effect relationships, although silver concentrations were clearly related to two of the four activities we tested (glucosidase and arylsulfatase). We also observed a relationship between silver concentrations and respiration activity on glucose, cellobiose and alanine substrates. The bacterial orders identified by NGS differed in sensitivity to the silver nanomaterial. We found that the adverse impact on nitrifiers matched the inhibition of PAO activity. EC 50 values calculated for each functional test did not identify a generally superior method. Conclusion: We found that all four test approaches were similar in sensitivity towards the model silver nanomaterial, an ion-releasing substance. We observed advantages and limitations for each test, which must be considered when selecting tests for the registration or approval of substances. It is unclear whether the sensitivity of the tests would be comparable when testing substances that do...
Adequate functioning of a sewage treatment plant (STP) is essential to protect the downstream aquatic environment (ECHA 2017), and information on the degradability of chemicals and their toxicity to activated sludge microorganisms is required. An environmental realistic higher tier test is a STP simulation test as described in OECD 303A (2001) which for nanoparticles can also be used to study their sorption behavior to activated sludge. However, information is limited on the influence of synthetic sewage on the microbial community of the activated sludge. A modified community can result in modifications of the sludge floccules affecting the sorption behavior. The main objective of our study was to show whether a representative microbial diversity remains under standardized test conditions as described in OECD 303A (2001) using synthetic sewage as influent. Furthermore, we investigated whether just considering the functional properties of a STP (elimination of dissolved organic carbon; nitrification), is sufficient for an assessment of gold nanoparticles (AuNPs) or whether the influence on microbial diversity also needs to be considered. AuNPs were used as a case study due to their rising medical applications and therefore increasing probability to reach the sewer and STP. The results can provide significant input for the interpretation of results from the regulatory point of view. To deliver these objectives, the general changes of the microbial population in activated sludge and its influence on the degradation activity (dissolved organic carbon (DOC) and inorganic nitrogen) using freshly collected sludge from the municipal STP in an artificial test system as a model STP in accordance with OECD 303A (2001) were assessed. Additionally, we evaluated the potential impact of AuNPs and its dispersant on the microbial composition and the overall impact on the function of the STP in terms of DOC degradation and nitrogen removal to observe if an assessment based on functional properties is sufficient. The bacteria composition in our study, evaluated at a class level, revealed commonly described environmental bacteria. Proteobacteria (β, α, δ) accounted for more than 50% but also nitrifying bacteria as Nitrospira were present. Our results show that mainly within the first 7 days of an acclimatization phase by addition of synthetic sewage, the bacterial community changed. Even though AuNPs can have antibacterial properties, no adverse effects on the function and structure of the microorganisms in the STP could be detected at concentrations of increased modeled PEC values by a factor of about 10,000. Complementary to other metallic nanomaterials, gold nanomaterials also sorb to a large extent to the activated sludge. If activated sludge is used as fertilizer on agricultural land, gold nanoparticles can be introduced into soils. In this case, the effect on soil (micro)organisms must be investigated more closely, also taking into account the structural diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.