Using directed evolution, a variant N-acetyl amino acid racemase (NAAAR G291D/F323Y) has been developed with up to 6-fold higher activity than the wild-type on a range of N-acetylated amino acids. The variant has been coupled with an enantiospecific acylase to give a preparative scale dynamic kinetic resolution which allows 98% conversion of N-acetyl-DL-allylglycine into D-allylglycine in 18 h at high substrate concentrations (50 g L(-1)). This is the first example of NAAAR operating under conditions which would allow it to be successfully used on an industrial scale for the production of enantiomerically pure α-amino acids. X-ray crystal analysis of the improved NAAAR variant allowed a comparison with the wild-type enzyme. We postulate that a network of novel interactions that result from the introduction of the two side chains is the source of improved catalytic performance.
SummaryHydrogen-dependent reduction of carbon dioxide to formic acid offers a promising route to greenhouse gas sequestration, carbon abatement technologies, hydrogen transport and storage, and the sustainable generation of renewable chemical feedstocks [1]. The most common approach to performing direct hydrogenation of CO2 to formate is to use chemical catalysts in homogeneous or heterogeneous reactions [2]. An alternative approach is to use the ability of living organisms to perform this reaction biologically. However, although CO2 fixation pathways are widely distributed in nature, only a few enzymes have been described that have the ability to perform the direct hydrogenation of CO2 [3, 4, 5]. The formate hydrogenlyase (FHL) enzyme from Escherichia coli normally oxidizes formic acid to carbon dioxide and couples that reaction directly to the reduction of protons to molecular hydrogen [6]. In this work, the reverse reaction of FHL is unlocked. It is established that FHL can operate as a highly efficient hydrogen-dependent carbon dioxide reductase when gaseous CO2 and H2 are placed under pressure (up to 10 bar). Using intact whole cells, the pressurized system was observed to rapidly convert 100% of gaseous CO2 to formic acid, and >500 mM formate was observed to accumulate in solution. Harnessing the reverse reaction has the potential to allow the versatile E. coli system to be employed as an exciting new carbon capture technology or as a cell factory dedicated to formic acid production, which is a commodity in itself as well as a feedstock for the synthesis of other valued chemicals.
A series of 1-aminopropan-2-ols were synthesized and evaluated against two strains of malaria, Plasmodium falciparum FCR3 (chloroquine-resistant) and 3D7 (chloroquine-sensitive). Microwave-assisted ring opening of epoxides (aryl and alkyl glycidyl ethers, glycidol, epichlorohydrin) with various amines without catalysts generated the desired library of beta-amino alcohols rapidly and efficiently. Most of the compounds showed micromolar potency against malaria, with seven of them having IC50 values between 1 and 10 microM against both Plasmodium falciparum strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.