The biosynthetic pathway to the unusual tetronate ring of certain polyketide natural products, including the antibiotics abyssomicin and tetronomycin (TMN) and the antitumour compound chlorothricin (CHL), is presently unknown. The gene clusters governing chlorothricin and tetronomycin biosynthesis both contain a gene encoding an atypical member of the FkbH family of enzymes, which has previously been shown to synthesise glyceryl-S-acyl carrier protein (ACP) as the first step in production of unusual extender units for modular polyketide biosynthesis. We show here that purified recombinant FkbH-like protein, Tmn16, from the TMN gene cluster catalyses the efficient transfer of a glyceryl moiety from D-1,3-bisphosphoglycerate (1,3-BPG) to either of the dedicated ACPs, Tmn7a and ChlD2, to form glyceryl-S-ACP, which directly implicates this compound as an intermediate in tetronate biosynthesis as well. Neither Tmn16 nor Tmn7a produced glyceryl-S-ACP when incubated, respectively, with analogous ACP and FkbH-like proteins from a known extender-unit pathway; this indicates a highly selective channelling of glycolytic metabolites into tetronate biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.