The presence of sp2 bonded carbon on a diamond or doped diamond surface, as a result of growth or processing, can affect material properties negatively, hence removal processes must be developed. Using boron doped diamond (BDD) we investigate the effectiveness of different removal methods via electrochemistry and transmission electron microscopy. We focus on two BDD surfaces, one processed by ns laser micromachining and the second which contains sp2 bonded carbon as a result of chemical vapour deposition (CVD) growth. After micromachining a layer of ordered graphite sits on the BDD surface, topped by fissured amorphous carbon (total thickness ~ m). Oxidative acid treatment at elevated temperature cannot remove all the sp2 bonded carbon and much smaller clusters of perpendicularly-orientated graphite (10’s nm), capped with a thinner layer of amorphous carbon – that we term “denatured graphite” – remain. In contrast, thermal oxidation in air at 600 oC is capable of all cluster removal, and can also be used to remove sp2 bonded carbon from CVD-grown BDD. Such understanding is important to any application where sp2 bonded carbon resulting from CVD growth or laser processing is detrimental for the intended application, e.g. in diamond quantum technology, photonics and electrochemistry.<br>
The presence of sp2 bonded carbon on a diamond or doped diamond surface, as a result of growth or processing, can affect material properties negatively, hence removal processes must be developed. Using boron doped diamond (BDD) we investigate the effectiveness of different removal methods via electrochemistry and transmission electron microscopy. We focus on two BDD surfaces, one processed by ns laser micromachining and the second which contains sp2 bonded carbon as a result of chemical vapour deposition (CVD) growth. After micromachining a layer of ordered graphite sits on the BDD surface, topped by fissured amorphous carbon (total thickness ~ m). Oxidative acid treatment at elevated temperature cannot remove all the sp2 bonded carbon and much smaller clusters of perpendicularly-orientated graphite (10’s nm), capped with a thinner layer of amorphous carbon – that we term “denatured graphite” – remain. In contrast, thermal oxidation in air at 600 oC is capable of all cluster removal, and can also be used to remove sp2 bonded carbon from CVD-grown BDD. Such understanding is important to any application where sp2 bonded carbon resulting from CVD growth or laser processing is detrimental for the intended application, e.g. in diamond quantum technology, photonics and electrochemistry.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.