Summary Robinow syndrome (RS) is a genetically heterogeneous disorder with six genes that converge on the WNT/planar cell polarity (PCP) signaling pathway implicated ( DVL1 , DVL3 , FZD2 , NXN , ROR2 , and WNT5A ). RS is characterized by skeletal dysplasia and distinctive facial and physical characteristics. To further explore the genetic heterogeneity, paralog contribution, and phenotypic variability of RS, we investigated a cohort of 22 individuals clinically diagnosed with RS from 18 unrelated families. Pathogenic or likely pathogenic variants in genes associated with RS or RS phenocopies were identified in all 22 individuals, including the first variant to be reported in DVL2 . We retrospectively collected medical records of 16 individuals from this cohort and extracted clinical descriptions from 52 previously published cases. We performed Human Phenotype Ontology (HPO) based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. Individuals with FZD2 variants clustered into two groups with demonstrable phenotypic differences between those with missense and truncating alleles. Probands with biallelic NXN variants clustered together with the majority of probands carrying DVL1 , DVL2 , and DVL3 variants, demonstrating no phenotypic distinction between the NXN -autosomal recessive and dominant forms of RS. While phenotypically similar diseases on the RS differential matched through HPO analysis, clustering using phenotype similarity score placed RS-associated phenotypes in a unique cluster containing WNT5A , FZD2 , and ROR2 apart from non-RS-associated paralogs. Through human phenotype analyses of this RS cohort and OMIM clinical synopses of Mendelian disease, this study begins to tease apart specific biologic roles for non-canonical WNT-pathway proteins.
Background Isolated lateral compartment knee arthritis is less prevalent than medial. While the reported results of medial unicompartmental knee replacement (UKR) have been good and comparable to total knee replacement, the results of lateral UKR have been mixed. We present the short-term results and survivorship of a fixed-bearing UKR designed specifically for the lateral compartment. Methods We report the result of 130 primary fixed-bearing lateral Oxford (FLO) UKRs (123 patients) performed between 2015 and 2019 with a minimum follow-up of 1 year. The indications for lateral UKR were: isolated lateral osteoarthritis (n = 122), post-trauma (n = 5) and osteonecrosis (n = 3). The mean age was 69.1 (± 11.6), mean BMI 28.4 (± 4.9), 66.9% female, 60% right-sided, and mean follow-up 3 (range 1–4.8 years, standard deviation ± 1) years. The primary outcome measure was the Oxford knee score (OKS). Survival analysis was performed with “revision for any reason”, “reoperation”, and “implant failure” as the endpoints. Results Six patients died from unrelated reasons. None of the implants failed. One required the addition of a medial UKR for medial arthritis. There were no other reoperations. At 4 years, the survival for implant failure was 100% and for both revision and all reoperations was 99.5% (95% CI 96.7–99.9%). At the last review, at a mean of 3 years, the mean Oxford knee score was 41. Conclusion The good survivorship and outcome scores suggest that UKR designed for the lateral compartment is an excellent alternative to total knee replacement in selected patients with isolated lateral tibiofemoral arthritis at short-term follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.