Patched (Ptch) heterozygous mice develop medulloblastoma (MB) and rhabdomyosarcoma (RMS) resembling the corresponding human tumors. We have previously shown that epigenetic silencing of the intact Ptch allele contributes to tumor formation in this model. Here, we investigated whether targeting of epigenetic silencing mechanisms could be useful in the treatment of Ptch-associated cancers. A reduction of endogenous DNA methyltransferase1 (Dnmt1) activity significantly reduced tumor incidence in heterozygous Ptch knockout mice. A combined treatment with the Dnmt inhibitor 5-aza-2 ¶deoxycytidine (5-aza-dC) and the histone deacetlyase (HDAC) inhibitor valproic acid (VPA) efficiently prevented MB and RMS formation, whereas monotherapies with either drug were less effective. Wild-type Ptch expression was efficiently reactivated in tumors by 5-aza-dC/VPA combination therapy. This was associated with reduced methylation of the Ptch promoter and induction of histone hyperacetylation suggesting inhibition of HDACs in vivo. However, the treatment was not effective in clinically overt, advanced stage tumors. This is a first in vivo demonstration that targeting of Dnmt and HDAC activities is highly effective in preventing formation of Ptch-associated tumors. The results suggest a novel clinical strategy for consolidation therapy of corresponding tumors in humans after completion of conventional treatment. Our data also suggest that epigenetic therapy may be less effective in treating advanced stages of tumors, at least in this tumor model. [Cancer Res 2009;69(3):887-95]
Mutations in Patched (PTCH) have been associated with tumors characteristic both for children [medulloblastoma (MB) and rhabdomyosarcoma (RMS)] and for elderly [basal cell carcinoma (BCC)]. The determinants of the variability in tumor onset and histology are unknown. We investigated the effects of the time-point and dosage of Ptch inactivation on tumor spectrum using conditional Ptch-knockout mice. Ptch heterozygosity induced prenatally resulted in the formation of RMS, which was accompanied by the silencing of the remaining wild-type Ptch allele. In contrast, RMS was observed neither after mono- nor biallelic postnatal deletion of Ptch. Postnatal biallelic deletion of Ptch led to BCC precancerous lesions of the gastrointestinal epithelium and mesenteric tumors. Hamartomatous gastrointestinal cystic tumors were induced by monoallelic, but not biallelic Ptch mutations, independently of the time-point of mutation induction. These data suggest that the expressivity of Ptch deficiency is largely determined by the time-point, the gene dose and mode of Ptch inactivation. Furthermore, they point to key differences in the tumorigenic mechanisms underlying adult and childhood tumors. The latter ones are unique among all tumors since their occurrence decreases rather than increases with age. A better understanding of mechanisms underlying this ontological restriction is of potential therapeutic value.
Activation of the Hedgehog (Hh)-signaling pathway due to deficiency in the Hh receptor Patched1 (Ptch) is the pivotal defect leading to formation of basal cell carcinoma (BCC). Recent reports provided evidence of Ptch-dependent secretion of vitamin D 3 -related compound, which functions as an endogenous inhibitor of Hh signaling by repressing the activity of the signal transduction partner of Ptch, Smoothened (Smo). This suggests that Ptch-deficient tumor cells are devoid of this substance, which in turn results in activation of Hhsignaling. Here, we show that the application of the physiologically active form of vitamin D 3, calcitriol, inhibits proliferation and growth of BCC of Ptch mutant mice in vitro and in vivo. This is accompanied by the activation of the vitamin D receptor (Vdr) and induction of BCC differentiation. In addition, calcitriol inhibits Hh signaling at the level of Smo in a Vdr-independent manner. The concomitant antiproliferative effects on BCC growth are stronger than those of the Hh-specific inhibitor cyclopamine, even though the latter more efficiently inhibits Hh signaling. Taken together, we show that exogenous supply of calcitriol controls the activity of 2 independent pathways, Hh and Vdr signaling, which are relevant to tumorigenesis and tumor treatment. These data suggest that calcitriol could be a therapeutic option in the treatment of BCC, the most common tumor in humans. Mol Cancer Ther; 10(11); 2179-88. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.