Adoption of the trinity of practices known commonly today as conservation agriculture (CA)-maintaining soil cover, reducing tillage, and enhancing soil nitrogen through legumes-is a critical process to the management of erosion in rural landscapes, and maintenance of aquatic habitats and hydropower potential. However, the large literature on the benefits and risks of CA fails to find any universal determinants of adoption, with competing uses for crop residues, availability of labor, and access to physical inputs common constraints appearing in different contexts. We conduct a study in the specific context of Malawi, using ethnographic interviewing to draw out possible decision criteria and machine learning to identify their explanatory power. This study is structured to inform the question: "How do farmers decide to adopt the specific activities of CA in Malawi?" We find that more than any other factor, adoption by neighbors (i.e., peer effects) matters, with possible implications for the overall cost of encouraging CA (e.g., through subsidies) as it is taken up across a landscape. Further, we note that little else within our household survey (save for more detailed articulation of neighbor and neighborhood characteristics) offers greater explanatory power than those factors identified by farmers themselves. Finally, we note that decisions made in the presence of an incentive are structurally different than those made without incentives, validating previous concerns in the literature regarding the basis most CA adoption studies, within CA promotion interventions.
Timely drying of groundnuts is important after harvest. In most parts of sub-Saharan Africa, moisture content reduction is practically achieved by solar drying. In particular, the groundnuts are traditionally cured in the field using the inverted windrow drying technique. Recently, the Mandela cock technique, a ventilated stack of groundnut plants with a chimney at the center, has 2 been introduced in the southern Africa region with the aim of reducing moisture content and the risk of aflatoxin contamination. An on-farm study was conducted in Malawi to compare the effectiveness of the Mandela cock and Windrow drying techniques with respect to aflatoxin control. For two consecutive years, farmers (2016, n=29; 2017; n=26) were recruited to test each of the two drying techniques. A mixed-design ANOVA showed that the Mandela cock groundnut drying technique led to significantly (p<0.001) higher aflatoxin levels in groundnut seed compared to the traditional inverted windrow drying (5.7 μg/kg , geometric mean vs 2.5 μg/kg in 2016 and 37.6 μg/kg vs 8.4 μg/kg in 2017). The present findings clearly demonstrate the need for regulation and technology validation if farmers and consumers are to benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.