We present an efficient channel estimation method for coherent optical OFDM (CO-OFDM) based on intra-symbol frequency-domain averaging (ISFA), and systematically study its robustness against transmission impairments such as optical noise, chromatic dispersion (CD), polarization-mode dispersion (PMD), polarization-dependent loss (PDL), and fiber nonlinearity. Numerical simulations are performed for a 112-Gb/s polarization-division multiplexed (PDM) CO-OFDM signal, and the ISFAbased channel estimation and the subsequent channel compensation are found to be highly robust against these transmission impairments in typical optical transport systems.
One of the main challenges of next generation optical communication is to increase the available bandwidth while reducing the size, cost and power consumption of photonic integrated circuits. Graphene has been recently proposed to be integrated with silicon photonics to meet these goals because of its high mobility, fast carrier dynamics and ultra-broadband optical properties. We focus on graphene photodetectors for high speed datacom and telecom applications based on the photo-thermo-electric effect, allowing for direct optical power to voltage conversion, zero dark current, and ultra-fast operation. We report on a chemical vapour deposition graphene photodetector based on the photo-thermoelectric effect, integrated on a silicon waveguide, providing frequency response >65 GHz and optimized to be interfaced to a 50 Ω voltage amplifier for direct voltage amplification. We demonstrate a system test leading to direct detection of 105 Gbit s−1 non-return to zero and 120 Gbit s−1 4-level pulse amplitude modulation optical signals.
We implemented a flexible transmission system operating at adjustable data rate and fixed bandwidth, baudrate, constellation and overhead using probabilistic shaping. We demonstrated in a transmission experiment up to 15% capacity and 43% reach increase versus 200 Gbit/s 16-QAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.